Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMAB và ΔMCK có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMK}\)(hai góc đối đỉnh)
MB=MK(gt)
Do đó: ΔMAB=ΔMCK(c-g-c)
Suy ra: AB=CK(hai cạnh tương ứng)
Ta có: ΔMAB=ΔMCK(cmt)
nên \(\widehat{MAB}=\widehat{MCK}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MCK}=90^0\)
\(\Leftrightarrow CK\perp CM\) tại C
hay CK\(\perp\)AC(Đpcm)
b) Xét ΔANC và ΔBNI có
AN=BN(N là trung điểm của AB)
\(\widehat{ANC}=\widehat{BNI}\)(hai góc đối đỉnh)
NC=NI(gt)
Do đó: ΔANC=ΔBNI(c-g-c)
Suy ra: \(\widehat{ACN}=\widehat{BIN}\)(hai góc tương ứng)
mà \(\widehat{ACN}\) và \(\widehat{BIN}\) là hai góc ở vị trí so le trong
nên AC//BI(Dấu hiệu nhận biết hai đường thẳng song song)
Xét ΔAMK và ΔCMB có
MA=MC(M là trung điểm của AC)
\(\widehat{AMK}=\widehat{CMB}\)(hai góc đối đỉnh)
MK=MB(gt)
Do đó: ΔAMK=ΔCMB(c-g-c)
Suy ra: \(\widehat{AKM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{AKM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét t/g AMD và t/g CMB có:
AM = MC (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c)
=> AD = BC (2 cạnh tương ứng) (đpcm)
b) Xét t/g BMA và t/g DMC có:
MB = MD (gt)
BMA = DMC ( đối đỉnh)
MA = MC (gt)
Do đó, t/g BMA = t/g DMC (c.g.c)
=> ABM = CDM (2 góc tương ứng)
Mà ABM và CDM là 2 góc ở vị trí so le trong nên AB // CD
Mà AB _|_ AC (gt) => AC _|_ CD hay AC _|_ DN
Có: BN // AC (gt)
AB // CN (cmt)
=> AB = CN ( tính chất đoạn chắn)
Xét t/g ABM vuông tại A và t/g CNM vuông tại C có:
AB = CN (cmt)
AM = CM (gt)
Do đó, t/g ABM = t/g CNM (2 cạnh góc vuông) (đpcm)
a: Ta có: AE+EB=AB
AM+MC=AC
mà AB=AC
và EB=MC
nên AE=AM
hay ΔAEM cân tại A
b: Xét ΔABM và ΔACE có
AB=AC
\(\widehat{BAM}\) chung
AM=AE
Do đó: ΔABM=ΔACE
Suy ra: \(\widehat{ABM}=\widehat{ACE}\)
c: XétΔABC có AE/AB=AM/AC
nên EM//BC
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)
a) Ta có: \(AP=BP=\dfrac{AB}{2}\)(P là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AP=BP=AN=NC
Xét ΔABN và ΔACP có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AP(cmt)
Do đó: ΔABN=ΔACP(c-g-c)
Suy ra: BN=CP(hai cạnh tương ứng)
b) Xét ΔMNC và ΔINA có
MN=IN(gt)
\(\widehat{MNC}=\widehat{INA}\)(hai góc đối đỉnh)
NC=NA(N là trung điểm của AC)
Do đó: ΔMNC=ΔINA(c-g-c)
Suy ra: MC=IA(hai cạnh tương ứng)
Xét ΔANM và ΔCNI có
AN=CN(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CNI}\)(hai góc đối đỉnh)
NM=NI(gt)
Do đó: ΔANM=ΔCNI(c-g-c)
Suy ra: AM=CI(hai cạnh tương ứng)
Ta có: ΔABC cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay \(\widehat{AMC}=90^0\)(1)
Xét ΔAMC và ΔCIA có
AC chung
AM=CI(cmt)
MC=IA(cmt)
Do đó: ΔAMC=ΔCIA(c-c-c)
Suy ra: \(\widehat{AMC}=\widehat{CIA}\)(hai góc tương ứng)(2)
Từ (1) và (2) suy ra \(\widehat{AIC}=90^0\)
Vậy: \(\widehat{AIC}=90^0\)
Thanks bạn nhiều lắm