Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
Giải: a) Ta có: x và y là 2 đại lượng tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)
Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}\) => \(x_1=14.\frac{-3}{4}\) => \(x_1=-\frac{21}{2}\)
b) Ta có: x và y là 2 đại tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)
Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{y_1}=\frac{-4}{3}\) => \(\frac{x_1}{-4}=\frac{y_1}{3}\) và \(y_1-x_1=-2\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3+4}=-\frac{2}{7}\)
=> \(\hept{\begin{cases}\frac{x_1}{-4}=-\frac{2}{7}\\\frac{y_1}{3}=-\frac{2}{7}\end{cases}}\) => \(\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_3=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)
Vậy ...
a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
Từ đó suy ra x = 11,y = 17,z = 23
b)
a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)
b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :
\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)
Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)
c) Tự làm nhé
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\left(-\dfrac{3}{4}\right):\dfrac{1}{7}\cdot2=\dfrac{-3}{4}\cdot7\cdot2=-\dfrac{3}{4}\cdot14=-\dfrac{42}{4}=-\dfrac{21}{2}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=\dfrac{2}{7}\)
Do đó: \(x_1=-\dfrac{8}{7};y_1=\dfrac{6}{7}\)
c: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-6}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{3\cdot\left(-6\right)+2\cdot3}=\dfrac{20}{-12}=-\dfrac{5}{3}\)
Do đó: \(x_1=10;y_1=-5\)
Câu 1:
\(C=2r\cdot3.14=r\cdot6.28\)
Vậy: C và r là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ k=6,28
Câu 2:
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-2}=\dfrac{4}{6}=\dfrac{2}{3}\)
hay \(x_1=\dfrac{-4}{3}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_1}{-3}=\dfrac{y_1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-3}=\dfrac{y_1}{4}=\dfrac{y_1-x_1}{4-\left(-3\right)}=\dfrac{-2}{7}\)
Do đó: \(x_1=\dfrac{6}{7};y_1=-\dfrac{8}{7}\)