K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Trong phép đo tuổi của vũ trụ, ta có: \(d = 21;a = 13799\)

Sai số tương đối không vượt quá \(\frac{{21}}{{13799}} \approx 0,15\% \)

Trong phép đo thời gian chạy của vận động viên, ta có: \(d = 0,1;a = 10,3\)

Sai số tương đối không vượt quá \(\frac{{0,1}}{{10,3}} \approx 0,97\% \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:  \(\frac{{21}}{{13799}} = 0,0015...\) và \(\frac{{0,1}}{{10,3}} = 0,0097...\)

\( \Rightarrow \frac{{21}}{{13799}} < \frac{{0,1}}{{10,3}}\) hay phép đo ước lượng độ tuổi của vũ trụ có độ chính xác cao hơn.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Từ câu b) của hoạt động khám phá 1, ta có không gian mẫu là

\( \begin{array}{l}\Omega  =\{\left(  {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\left( {3;1} \right);\left( {3;2} \right);\\\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {4;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right);\left( {6;6} \right)\}\end{array} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Xét phương pháp 1: ta có d=0,026(tỉ năm);  a=13,807 (tỉ năm)

\({\delta _5} \le \frac{{0,026}}{{\left| {13,807} \right|}} \approx 1,{88.10^{ - 3}} = 0,00188\)

Xét phương pháp 2: ta có d=0,021(tỉ năm);  a=13,799 (tỉ năm)

\({\delta _5} \le \frac{{0,021}}{{\left| {13,799} \right|}} \approx 1,{52.10^{ - 3}} = 0,00152\)

Ta thấy \(0,00188 > 0,00152\) nên phương pháp 2 cho kết quả chính xác hơn.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Điểm số bài kiểm tra môn Toán của các bạn trong Tổ 1 là 6; 10; 6; 8; 7; 10

Số điểm 6 là 2, bằng số điểm 10 và nhiều hơn số điểm 7, điểm 8. Do đó mẫu số liệu trên có \({M_o} = 6,{M_o} = 10.\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Kết quả phép thử là (2;3) tương ứng với lần gieo đầu tiên số chấm là 2 và lần giao thứ hai số chấm là 3

Suy ra số chấm hai lần khác nhau

Vậy Bình thắng

b) Cường chiến thắng thì kết quả số chấm trên hai lần gieo là giống nhau nên tập hợp các kết quả của phép thử đem lại chiến thắng cho Cường là

\(A = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Hàm số ở câu a) \(y = 2{x^2} - 6\) là hàm số bậc hai với \(a = 2,b =  - 6,c = 0\)

Hàm số ở câu c) \(y =  - 5{x^2} + 15x + 20\) là hàm số bậc hai với \(a =  - 5,b = 15,c = 20\)

Hàm số ở câu b) không phải là hàm số bậc hai.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(3,141 < \pi  < 3,142 \Rightarrow 3,141 - 3,125 < \pi  - 3,125 < 3,142 - 3,125\)

Hay \(0,016 < \pi  - 3,125 < 0,017 \Rightarrow 0,016 < \left| {\pi  - 3,125} \right| < 0,017\)

Sai số tuyệt đối của số gần đúng 3,125:  \(0,016 < {\Delta _{3,125}} < 0,017\)

Sai số tương đối \({\delta _{3,125}} = \frac{{{\Delta _{3.125}}}}{{\left| {3,125} \right|}} < \frac{{0,017}}{{3,125}} = 0,0544\% \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Để cửa hàng có lãi thì lợi nhuận lớn hơn 0

Nên ta có bất phương trình như sau: \( - 3{x^2} + 200x - 2325 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 200x - 2325\) có hai nghiệm phân biệt là \({x_1} = 15;{x_2} = \frac{{155}}{3}\) và có \(a =  - 3 < 0\)

Nên \(f\left( x \right)\) dương khi nằm trong khoảng \(\left( {15;\frac{{155}}{3}} \right)\)

Vậy bất phương trình \( - 3{x^2} + 200x - 2325 > 0\) có tập nghiệm là \(\left( {15;\frac{{155}}{3}} \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Hàng của chữ số khác 0 đầu tiên bên trái của độ chính xác \(d = 100\) là hàng trăm, nên ta quy tròn \(a = 6547\) đến hàng nghìn.

Vậy số quy tròn của a là 7 000.

Ta có: \(6547-100<\overline a< 6547+100 \Leftrightarrow 6447 <\overline a< 6647\) nên \(6447-7000 <\overline a -7000< 6647-7000 \Leftrightarrow -553 <\overline a -7000< -353 \Rightarrow |\overline a -7000| < 553\)

Sai số tương đối là \({\delta _a} \le \frac{{553}}{{\left| {7000} \right|}} = 7,9\% \)