Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
=> \(1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
=> \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
\(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
=> \(1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
=> \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
ta có: \(\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
ta có: \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\Rightarrow1-\frac{1}{2003\times2004}<1-\frac{1}{2004\times2005}\)
\(\frac{2003\times2004-1}{2003\times2004}<\frac{2004\times2005-1}{2004\times2005}\)
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
Bạn kham khảo link này nhé.
Câu hỏi của Quế diệu khanh - Toán lớp 6 - Học toán với OnlineMath
Ta có : các phân số từ 1/11 ; 1/12 đến 1/19 đều lớn hơn phân số 1/20
Từ đó lại có : 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20 + 1/20 + 1/20+ ...+ 1/20 ( số số hạng gồm 10 phân số 1/20)
=> 1/11+ 1/12+ 1/13+...+ 1/20 > 10/20
=> 1/11+1/12+1/13+...+1/20 > 1/2
<=> S > 1/2 .
Ta có :
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 số \(\frac{1}{20}\) )
\(S>\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)