K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

b=19bc+d1+a9e=1900+1+90+bc+d0+a00+e=1991+abc+de

            Vì 1992>1991=>a>b

Bài1                                                                                               Bài3                                                                                           so sánh tổng hoác điền dấu                                                              điền dấu                        A =abc+ab+1997            ...
Đọc tiếp

Bài1                                                                                               Bài3                                                                                           
so sánh tổng hoác điền dấu                                                              điền dấu                        
A =abc+ab+1997                                                                             1a26+4b4+5bc [   ] abc +1997
B=1ab9+9ac+9b                                                                              abc+m00 [   ] m0bc+a00
so sánh A và B                                                                                x5+5x [   ] xx+56                                                  

Bài2
so sánh tổng hoặc điền dấu 
A=abc+de+1992
B=19bc+d1+a9e
so sánh tổng hoặc điền dấu

0
2 tháng 3 2018

Có :

A = 10 - 9/10^1991+1

B = 10 - 9/10^1992+1

Vì 10^1991+1 < 10^1992+1 => 9/10^1991+1 > 9/10^1992+1

=> A < B

Tk mk nha

20 tháng 4 2017

Ta có : \(A=\frac{10^{1990}+1}{10^{1991}+1}=>10A=\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)

\(=>10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{\left(10^{1991}+1\right)+9}{10^{1991}+1}\)

\(=>10A=1+\frac{9}{10^{1991}+1}\)

Ta lại có : \(B=\frac{10^{1991}+1}{10^{1992}+1}=>10B=\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)

Tương tự như A => \(10B=1+\frac{9}{10^{1992}+1}\)

Vì \(\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}=>10A>10B\)

\(=>A>B\)

20 tháng 4 2017

A < B

Chắc thế

:)

:)

6 tháng 3 2017

\(\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{\left(10^{1992}+10\right)-9}{10^{1992}+10}=1-\frac{9}{10^{1992}+10}\)

\(\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{\left(10^{1993}+10\right)-9}{10^{1993}+10}=1-\frac{9}{10^{1993}+10}\)

Vì \(10^{1992}+10< 10^{1993}+10\) nên \(1+\frac{9}{10^{1993}+10}>1+\frac{9}{10^{1993}+10}\)

Do đó \(A>B\)

6 tháng 3 2017

lấy máy tính mà tính!