Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề có pải là A=\(\frac{19^{30}+5}{19^{31}+5}\) ; B=\(\frac{19^{31}+5}{19^{32}+5}\) PẢI KO BẠN
Đặt 1931 = a ( cho đơn giản nha)
\(A=\frac{\frac{a}{19}+5}{a+5}=\frac{a+95}{19\left(a+5\right)}\)
\(B=\frac{a+5}{19a+5}\)
Ta có
\(B-A=\frac{a+5}{19a+5}-\frac{a+95}{19\left(a+5\right)}=-\frac{1620a}{19\left(a+5\right)\left(19a+5\right)}< 0\)
Vậy A > B
Cách khá nhé
Ta có
\(19A=\frac{30^{31}+19.5}{30^{31}+5}=1+\frac{90}{30^{31}+5}\)
\(19B=\frac{30^{32}+19.5}{30^{32}+5}=1+\frac{90}{30^{32}+5}\)
Vì \(30^{31}+5< 30^{32}+5\Rightarrow\frac{90}{30^{31}+5}>\frac{90}{30^{32}+5}\)
\(\Rightarrow1+\frac{90}{30^{31}+5}>1+\frac{90}{30^{32}+5}\)
\(\Rightarrow19A>19B\Rightarrow A>B\)
a) \(81^{40}=\left(3^4\right)^{40}=3^{160}\)
\(27^{14}=\left(3^3\right)^{14}=3^{42}\)
Vì \(3^{160}>3^{42}\) => \(81^{40}>27^{14}\)
b) \(5^{64}=5^{4.16}=625^{16}\)
\(3^{96}=3^{6.16}=729^{16}\)
Vì \(625^{16}< 729^{16}\)=> \(5^{64}< 3^{96}\)
c) \(125^{12}=\left(5^3\right)^{12}=5^{36}\)
\(25^{10}=\left(5^2\right)^{10}=5^{20}\)
Vì \(5^{36}>5^{20}\)=> \(125^{12}>25^{10}\)
T_i_c_k nha,mơn bạn nhìu ^^
Ta có : \(A=\frac{19^{30}+15}{19^{31}+15}\)
\(\Rightarrow19A=\frac{19^{31}+285}{19^{31}+15}=\frac{19^{31}+15+270}{19^{31}+15}=1+\frac{270}{19^{31}+15}\)
Lại có \(B=\frac{19^{31}+15}{19^{32}+15}\)
\(\Rightarrow19B=\frac{19^{32}+285}{19^{32}+15}=\frac{19^{32}+15+270}{19^{32}+15}=1+\frac{270}{19^{32}+15}\)
Vì \(\frac{270}{19^{32}+15}< \frac{270}{19^{31}+15}\Rightarrow1+\frac{270}{19^{32}+5}< 1+\frac{270}{19^{31}+15}\Rightarrow19B< 19A\Rightarrow B< A\)
a, A= (3+5)^2 = 8^2 = 64
B= 3^2 + 5^2 = 27 + 25= 52
=> A > B
Câu B tương tự câu A bạn tự làm nhé. Chúc bạn học tốt!
a) ta có: A = (3+5)^2 = 3^2+5^2 + 3.5 + 5.3 > B = 3^2.5^2 ( bn phân tích A ra rùi so sánh nha, nếu ko mún phân tích thì bn có thể tính A;B)
b) ta có: C = (3+5)^3 = 8^3 = 512
D = 3^3 + 5^3 = 27+125 = 152
=> 512 >152
=> C >D