K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

alo chào bn ạ,bn kb vs mình nha mình ib rồi ạ

 

30 tháng 12 2021

\(=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)

29 tháng 11 2021

1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)

30 tháng 12 2018

\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)

\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)

\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)

\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)

\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)

b, Khi x = -4

\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)

30 tháng 12 2018

cảm ơn bạn

16 tháng 7 2019

bài 1: 

2(x^2-9).4(x^2-1)

=(2x^2-18)(4x^2-4)

=8x^4-8x^2-72x^2+72

=8x^4-80x^2+72

16 tháng 7 2019

\(Bai1:2\left(x-3\right)\left(x+3\right)+4\left(x-1\right)\left(x+1\right)\)

\(=2\left(x^2-9\right)+4\left(x^2-1\right)\)

\(=2x^2-18+4x^2-4\)

\(=6x^2-22\)

\(Bai2:-\left(6x-1\right)\left(3-2x\right)+\left(3x-2\right)\left(4x-3\right)=17\)

\(\Leftrightarrow-\left(18x-12x^2-3+2x\right)+12x^2-9x-8x+6=17\)

\(\Leftrightarrow-18x+12x^2+3-2x+12x^2-9x-8x+6=17\)

\(\Leftrightarrow24x^2-37x+9-17=0\)

\(\Leftrightarrow24x^2-37x-8=0\)

Đề sai??

b: \(=\dfrac{4x\left(x-1\right)\left(x+1\right)}{6x\left(x-1\right)}=\dfrac{2\left(x+1\right)}{3}\)

c: \(=\dfrac{\left(5-x-1\right)\left(5+x+1\right)}{\left(x+6\right)^2}=\dfrac{\left(4-x\right)\left(x+6\right)}{\left(x+6\right)^2}=\dfrac{4-x}{x+6}\)

d: \(=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)

20 tháng 7 2018

Bài 1:

a)  ĐKXĐ:  \(x\ne\pm5\)

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

\(=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x-5+\left(2x+10\right)-\left(2x+10\right)}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)

b)  \(B=9x^2-42x+49=\left(3x-7\right)^2\)

Tại  \(x=-3\)thì:   \(B=\left[3.\left(-3\right)-7\right]^2=256\)

20 tháng 7 2018

Bài 2:

a)  ĐKXĐ:  \(x\ne\pm3\)

\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)

\(=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)

b)  \(A=4\)\(\Rightarrow\)\(\frac{4}{x-3}=4\)

\(\Rightarrow\)\(4\left(x-3\right)=4\)\(\Leftrightarrow\)\(x-3=1\)\(\Leftrightarrow\)\(x=4\)   (t/m ĐKXĐ)

Vậy....

\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)

\(=\frac{\left(x+y\right)^2-1}{\left(x-1\right)^2-y^2}\)

\(=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-1-y\right)\left(x-1+y\right)}\)

\(=\frac{x+y+1}{x-y-1}\)

9 tháng 1 2019

a, ĐKXĐ: \(x\ne0;x\ne\pm1\)

\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(=\left(\frac{2x.2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{2x}\)

\(=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}:\frac{x+1}{2x}=\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{2x}{x+1}=\frac{x}{x-1}\)

b,Để \(P=2\Leftrightarrow\frac{x}{x-1}=2\Leftrightarrow2\left(x-1\right)=x\Leftrightarrow2x-2-x=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tmđk\right)\)

Vậy để P=2 <=> x=2