Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2020/2021 < 1 < 2021/2020
Suy ra 2020/2021 < 2021/2020
ta có
\(C=2020\times\left(2021^9+2021^8+...+2021^2+2021^1+1\right)+1\)
\(2020\times\frac{2021^{10}-1}{2021-1}+1=2021^{10}-1+1=2021^{10}\)
a) \(A=2019.2021=\left(2020-1\right).\left(2020+1\right)=2020^2-1\)
\(B=2020.2020=2020^2\)
\(\Rightarrow2020^2-1< 2020^2\)\(\Rightarrow A< B\)
b) \(C=35.53-18=\left(34+1\right).53-18=34.53+53-18=34.53+34\)
mà \(D=35+53.34\)
\(\Rightarrow C=D\)
Ta có 20212 = 2021 . 2021
Vì 2020 < 2021 nên 2021 . 2020 < 2021 . 2021 hay 2021 . 2020 < 20212
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
\(A=\left(2021-1\right)\left(2021-2\right)\cdot\left(2021-3\right)\cdot...\cdot\left(2021-n\right)\)
Tích trên có đúng 2021 thừa số nên n=2021
=>\(A=\left(2021-1\right)\left(2021-2\right)\cdot\left(2021-3\right)\cdot...\cdot\left(2021-2021\right)\)
\(=2020\cdot2019\cdot2018\cdot...\cdot0\)
=0
gọi :1 + 2 + 2^2 + ... + 2^2020 + 2^2021 là A
ta có : A = 1 + 2 + 2^2 + ... + 2^2020 + 2^2021
=> 2A = 2 + 2^2 + ... + 2^2021 + 2^2022
=> 2A - A = 2 + 2^2 + ... + 2^2021 + 2^2022 - 1 - 2 - 2^2 -... - 2^2020 - 2^2021
=> A = 2^2022 - 1