Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x=3 thì:
+) \(x^2-3x+4=3^2-3.3+4=9-9+4=4\) (1)
+) 2(x-1)=2(3-1)=2.2=4 (2)
Từ (1) và (2) => x=3 là nghiệm của phương trình....
a) Ta có: 2² = 4 > 0 và (-3)² = 9 > 0 => x = 2; x = -3 là nghiệm của bất phương trình x² > 0
b) Ta có Với mọi x ≠ 0 thì x² > 0 và khi x = 0 thì 0² = 0 nên mọi giá trị của ẩn x không là nghiệm của bất phương trình x² > 0. tập nghiệm của bất phương trình x² > 0 là S = {x ∈ R/x ≠ 0}
= R\{0}
\(\text{a, Ta có :}\) \(M=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\text{Đặt }a=x^2+10x+16\)
\(\text{Ta có: }M=a\left(a+8\right)+16=a^2+8a+16=\left(a+4\right)^2\)
\(M=\left(x^2+10x+20\right)^2\)
\(\text{b, }\)\(\left|x+1\right|=\left|x\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x\left(x+1\right)\right|-\left|x+1\right|=0\)
\(\Leftrightarrow\left|x\right|.\left|x+1\right|-\left|x+1\right|=0\)
\(\Rightarrow\left|x+1\right|\left(\left|x\right|-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\\left|x\right|-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
a: Vì 2,99<3 nên 2,99 là nghiệm của bất phương trình 3>x
2,991; 2,992; 2,993
b: Vì 4,01>4 nên 4,01 là nghiệm của bất phương trình 4<x
4,004; 4,005; 4,006
a: Vì 2,99<3 nên 2,99 là nghiệm của bất phương trình 3>x
2,991; 2,992; 2,993
b: Vì 4,01>4 nên 4,01 là nghiệm của bất phương trình 4<x
4,004; 4,005; 4,006
a, Ta có : \(5x-2=3x+1\)
=> \(5x-2-3x-1=0\)
=> \(2x=3\)
=> \(x=\frac{3}{2}\) ( đpcm )
b, Ta có : \(x^2-3x+7=1+2x\)
=> \(x^2-3x+7-1-2x=0\)
=> \(x^2-5x+6=0\)
=> \(x^2-2x-3x+6=0\)
=> \(x\left(x-2\right)-3\left(x-2\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\) ( đpcm )
a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6
Vậy phương trình (1) có một nghiệm duy nhất x = 6.
b. Ta có:
2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:
(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7
Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
c1 thử vào là xong nhé
c2 x^2 -3x+7=1+2x
<=> x^2 -3x-2x+6=0
<=> x^2 -5x+6=0
<=> (x-2)(x-3)=0
<=> x=2
hoặc a+3
=> đpcm