K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

 \(\text{Tổng }=\frac{n\left(n+1\right)}{2}\)

Do n(n+1) chỉ có chữ số tận cùng là 0; 2; 6 nên tổng chỉ có tận cùng là 0; 1; 3.

 

13 tháng 11 2018

\(\text{Chứng minh rằng : Tổng }\)

\(S=1+2+3+...+n\left(n\in N\right)\)

\(\text{Không có chữ số tận cùng là }2\text{ ; }4\text{ ; }7\text{ ; }9\)

                                    \(\text{Bài giải}\)

\(\text{Ta có : }\)

\(\text{Số số hạng của tổng }S=\left(n-1\right)\text{ : }1+1=n\left(\text{số hạng}\right)\)

\(\text{Tổng của }S=\left(n+1\right)\text{ x }n\text{ : }2\)

             \(\Rightarrow\text{ }n+1\text{ là số chẵn hoặc số lẻ };\text{ }\Rightarrow\text{ }n\text{ là số chẵn hoặc số lẻ}\)

        \(\Rightarrow\text{ Tích }\left(n+1\right)n\text{ là tích của hai số tự nhiên liên tiếp .}\)

                          \(\Rightarrow\text{ Tích là số chẵn }\)

     \(\text{Còn nữa bạn tự suy nghĩ nha ! Sẽ ra liền mà ! Dài quá nên viết mỏi tay rồi ! Chúc bạn học tốt !}\)

23 tháng 7 2015

làm 1 bài thôi có được không.

12 tháng 10 2015

#ha le ha ban trả lời câu 2,3,4 giúp minh với

12 tháng 4 2018

a, TC:N=1+3+3^2+3^3+...+3^50+3^51

            =(1+3)+(3^2+3^3)+...+(3^50+3^51)

            =4+3^2.4+...+3^50.4

            =4(1+3^2+...+3^50) chia hết cho 4

=>DCPCM

c, N=1+3+3^2+3^3+...+3^50+3^51

  3N=3+3^2+3^3+...+3^51+3^52

=>3N-N=3^52-1

=>2N=3^52-1

=>N=(3^52-1):2

cmr [7+1].[7+2] chia hết cho 3

=8x9

=72

72 chia hết cho 3

ĐCPCM

   Ta có chú ý chẵn cộng chẵn bằng chẵn

                        lẻ cộng chẵn bằng lẻ

                        lẻ cộng lẻ là chẵn

mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn 

=> mà số chẵn chia hết cho 2

ĐCPCM

S=1+31+32+33+...+330

3S=3+3^2+3^3+...+3^{31}3S=3+32+33+...+331

3S-S=3^{31}-13SS=3311

2S=3^{4.7+3}-12S=34.7+31

2S=81^7.27-12S=817.271

2S=\overline{......1}.27-12S=......1.271

2S=\overline{......7}-1=\overline{......6}2S=......71=......6

S=\overline{........3}S=........3

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

27 tháng 11 2019

1) CMR: (7+1)(7+2)\(⋮\)3

\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)

2) CMR: \(3^{100}+19^{990}⋮2\)

ta có: \(3^{100}\)có chữ số tận cùng là số lẻ

\(19^{990}\)có chữ số tận cùng là số lẻ

mà lẻ + lẻ = chẵn => đpcm

3) abcabc có ít nhất 3 ước số nguyên tố

ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13

Vậy...

4) Cho \(M=1+3^1+3^2+...+3^{30}\)

Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?

ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)

\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)

(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)

\(\Leftrightarrow2M=3^{31}-1\)

ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)

\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8

=>đpcm

Học tốt nhé ^3^