Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+5+5^2+5^3+...+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)
\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)
\(=6+5^2.6+5^4.6+...+5^{100}.6\)
\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)
\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
a) Ta có:
abcdeg = ab . 10000+cd.100+eg
= ab.9999+cd.99+ab+cd+eg
= (9999ab+99cd)+(ab+cd+eg)
Vì 9999ab + 99cd chia hết cho 11 (vì 9999 và 99 chia hết cho 11) và ab+cd+eg chia hết cho 11(theo đề bài)
nen => abcdeg chia hết cho 11
=> đpcm
b) Ta có:
10^28+8=1000..0008(27 chữ số 0)
Xét đuôi 008 chia hết cho 8 nên=> 10^28+8 chia hết cho 8(1)
Xét 10^28+8 có tổng các chữ số chia hết cho 9 nên => 10^28+8 chia hết cho 9(2)
mà 8.9=72(3)
Từ (1),(2) và (3)=> 10^28+8 chia hết cho 72
=> đpcm
a) Ta có: ab - ba = 10a +b - 10b - a = (10a - a) - (10b - b)
= a(10 - 1) - b(10 - 1) = 9a - 9b = 9(a - b)
\(\Rightarrow\)(ab - ba ) \(⋮\)9 (vì có chứa thừa số 9)
b) Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99ab \(⋮\)11; (ab + cd) \(⋮\)11
\(\Rightarrow\)(99ab + ab + cd) chia hết cho 11
\(\Rightarrow\)(ab + cd) chia hết cho 11 thì abcd chia hết cho 11
c) Ta có: abcdeg = 1000abc + deg = 1001abc + (abc - deg)
Vì 1001abc chia hết cho 13
(abc - deg) chia hết cho 13
\(\Rightarrow\)abcdeg chia hết cho 13
\(\Rightarrow\)(abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13.
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
a/
abcdeg=10.abc+deg=11.abc-abc+deg=11.abc-(abc-deg)
Ta có
11.abc chia hết cho 11
abc-deg chia hết cho 11 (theo đề bài)
=> abcdeg chia hết cho 11
b/
abc=100a+10b+c=96a+8b+(4a+2b+c)=8(12a+b)+(4a+2b+c) chia hết cho 8
Ta có
8(12a+b) chia hết cho 8 => 4a+2b+c chia hết cho 8
Sorry!
abcdeg=1000.abc+deg=1001.abc-abc+deg=11.91.abc-(abc-deg)
Ta có
11.91.abc chia hết cho 11
(abc-deg) chia hết cho 11 (theo đề bài)
=> abcdeg chia hết cho 11