Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2-2n-22\) \(⋮\)\(n+3\)
\(\Leftrightarrow\)\(\left(n-5\right)\left(n+3\right)-7\) \(⋮\)\(n+3\)
Ta thấy: \(\left(n-5\right)\left(n+3\right)\)\(⋮\)\(n+3\)
nên \(7\)\(⋮\)\(n+3\)
hay \(n+3\) \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n+3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-10\) \(-4\) \(-2\) \(4\)
Vậy....
a) A = 3 + 32 + ... + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3( 1 + 2 ) + 33( 1 + 2 ) + ... + 399( 1 + 2 )
A = 3( 1 + 33 + ... 399 ) ( 1 ).
b) Từ ( 1 ) ta có A chia hết cho 4 và 9.
c) 3A = 32 + 33 + ... + 3100 + 3101
3A - A = ( 32 + 33 + ... + 3100 + 3101 ) - ( 3 + 32 + ... + 3100 )
2A = 3101 - 3 \(\Rightarrow\)2A + 3 = 3101
\(\Rightarrow\)n = 101.
a) A= 3+32+...+3100
=> 3A = 32+33+...+3101
=> 3A-A= 32+33+...+3101 - ( 3+32+...+3100 )
=> 2A = 3101-3
=> A= \(\frac{3^{101}-3}{2}\)
b) Trong câu hỏi tương tự nhé
c) Theo câu a
A = \(\frac{3^{101}-3}{2}\)
=> 2A =3101-3
=> 2A+3=3101
=> n=101
1/ \(=3^n.3^2+3^n=3^n\left(3^2+1\right)=10.3^n⋮10\)
2/ \(100.x+\left(1+2+3+...+100\right)=7450\)
Đến đây bạn tự làm nốt nhé
1. Ta có: \(3^{n+2}+3^n=3^n.\left(3^2+1\right)=3^n.\left(9+1\right)=3^n.10⋮10\)( đpcm )
2. \(\left(x+1\right)+\left(x+2\right)+.......+\left(x+100\right)=7450\)
\(\Leftrightarrow x+1+x+2+........+x+100=7450\)
\(\Leftrightarrow100x+\frac{100.101}{2}=7450\)
\(\Leftrightarrow100x+5050=7450\)
\(\Leftrightarrow100x=2400\)\(\Leftrightarrow x=24\)
Vậy \(x=24\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(A=3+2^2.\left(1+2\right)+...+2^{10}.\left(1+2\right)\)
\(A=3+2^2.3+....+2^{10}.3\)
\(A=3.\left(1+2^2+...+2^{10}\right)⋮3\)
2) TH1: n là số chẵn
=> n chia hết cho 2=> n.(n+13) chia hết cho 2
TH2: n là số lẻ
=>(n+13) chia hết cho 2=>n.(n+13) chia hết cho 2
Vậy n.(n+13) chia hết cho 2 vs mọi n thuộc N
Cái này mà cũng phải chứng tỏ với chả chứng minh ak?!!
VP= a^n * b^n = a*a*a*a...*a (n thừa số a) * b*b*b*b.....*b (n thừa số b) = ab * ab * ab ....* ab (n thừa số ab) = (ab)^n = VT
=> VP = VT
(ab)n = an . bn
(ab)n = a.a.a...a(n số a) .b.b.....b(n số b)
(ab)n = (ab)(ab)(ab) (n lần tích của ab)
(ab)n= (ab)n
\(\Rightarrow\)(ab)n = an . bn