Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+ n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là hai số liên tiếp lên có tận cùng là 0,2,6
=> n . ( n + 1 ) + 1 có tận cùng là 1,3,7 không chia hết cho 5
MÀ số chia hết ch 4 phải có hai chữ số tận cùng chia hết cho 4 mà số chia hết cho 4 phải là số chẵn => n . ( n + 1 ) + 1 không chia hết cho 4
Vậy n . ( n + 1 ) + 1 không chia hết cho 4,5 ( dpcm )
n2+ n + 1 = n ( n + 1 ) + 1
Thử các trường hợp n tận cùng là các chữ số 0, 1, 2, .., 9 ta có nhận xét: n. ( n + 1 ) là hai số liên tiếp nên có tận cùng là 0 , 2 , 6
=> n .( n + 1 ) + 1 có tận cùng là 1 , 3 , 7 không chia hết cho 5 (vì không có tận cùng là 5 hoặc 0).
Thêm nữa n.(n + 1) +1 có chữ số tận cùng là 1 , 3 , 7 nên là số lẻ => Nó không chia hết cho 2 => Nó cũng ko chia hết cho 4.
Vậy n2+ n + 1 không chia hết cho 4,5 ( dpcm )
Dat n\(^2\)+n+1=A
A=n(n+1)+1
Ma n(n+1) tan cung la 0,2,6
\(\Rightarrow\)A tan cung la 1,3,7
\(\Rightarrow\)A tan cung la le\(\Rightarrow\)A ko chia het cho 4(dpcm)
A ko tan cung la 0,5\(\Rightarrow\)A ko chia het cho 5(dpcm)
Đặt \(n^2+n+1\)là A ta có
A=n(n+1)+1
Mà n(n+1) tận cùng là các số 0;2;6
⇒A tận cùng là các số 1,3,7
⇒A tận cùng là lẻ⇒A ko chia het cho 4(dpcm)
A ko tan cung la 0,5⇒A ko chia het cho 5(dpcm)
P/s tham khảo nha
A=n(n+1)+1
n(n+1) luôn chia hết cho 2
n(n+1) không chia hết cho với n khác 5
Do đó A ko chia hết cho 2 và 5
Chứng minh k chia hết cho 4:
Ta có:n^2+n+1=n(n+1)+1
n(n+1) là tích của 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2. Mà 1 không chia hết cho 2
=n(n+1)+1 không chia hết cho 2
Suy ra: n(n+1)+1 không chia hết cho 4
Hoặc n^2+n+1 không chia hết cho 4
Chứng minh không chia hết cho 5:
Ta có: n^2+n+1=n(n+1)+1
n+(n+1) là tích của số tự nhiên liên tiếp nên có chữ số tận cùng là: 0;2;6
Suy ra: n(n+1)+1 có chữ số tận cùng là:1;3;7
Mà các chữ số tận cùng khác 0 hoặc 5 thì k chia hết cho 5
Vậy n(n+1)+1 không chia hết cho 5
Hay:n^2+n+1 không chia hết cho 5
Đặt A = n^2+n+2
Có : A = n^2+n+1 = (n^2+n) + 1 = n.(n+1)+1
Ta thấy n và n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1) chia hết cho 2
=> n.(n+1)+1 ko chia hết cho 2 nên n.(n+1)+1 ko chia hết cho 4
a) Ta có n^2+n+1=n(n+1)+1
mà n(n+1) chia hết cho 2 (vì tích 2 số liên tiếp chia hết cho 2) nhưng 1 không chia hết cho 2
=> n^2+n+1 ko chia hết cho 2
4 / tổng sau có chia hết cho 9
vì 2+4+8+16+32+64
ta nhóm : ( 2+16 )+ ( 4+32) + 63+1+8
= 18+36+63+9
vì 18 chia hết cho 9
36 chia hết cho 9
36 chia hết cho 9
9 chia hết cho 9
vậy tổng chia hết cho 9
dễ mà :
a . A = n^2 + n + n = n ( n + 1 ) + 1
n , n + 1 là hai số tự nhiên liến tiếp => n ( n + 1 ) là số chẵn
=> n ( n + 1 ) + 1 là số lẻ
=> A không chia hết cho 2
b . Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
a) *khi n là số lẻ =>n2 là số lẻ ; n+1 là số chẳn
=>A=n2+n+1 là số lẽ không chia hết cho 2
*khi n là số chẳn=> n2 là số chẳn ; n+1 là số lẻ
=>A=n2+n+1 là số lẻ không chia hết cho 2
Vậy A không chia hết cho 2
b)Ta có A=n2+n+1=n.(n+1)+1
Ta thấy: n.(n+1) là tích 2 số tự nhiên liên tiếp nên n.(n+1) là số chẳn:
=>n.(n+1) có thể tận cùng là 0;2;4;6;8
Với n.(n+1)=0;2;6;8 => A=n(n+1)+1 không có tận cùng là 0 hoặc 5 nên không chia hết cho 5
Với n.(n+1)=4
Ta lại có : 4=1.4=4.1=2.2
=>n.(n+1) khác 4
Vậy A không chia hết cho 5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
n2 + n + 1 = n ( n + 1 ) + 1
Vì n . ( n + 1 ) là hai số liên tiếp mà hai số liên tiếp có tận cùng là 0,2,6
=> n . ( n + 1 ) + 1 có tận cùng là : 1 , 3 , 7 không chia hết cho 5
Mà số chia hết cho 4 phải là số chẵn => n . ( n + 1 ) + 1 không chia hết cho 4
Vậy n2+n+1 không chia hết cho 4,5 ( dpcm )