Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. D = ( 5 + 5^2 ) + ... + ( 5^99 + 5^100 )
D = 5 ( 1 + 2 ) + ... + 5^99 ( 1 + 2 )
D = 5 . 6 + ... + 5^99 . 6
D = 6 ( 5 + ... + 5^99 ) chia hết cho 6 ( đpcm )
2. gợi ý : nhóm 5 số vào một
3. Đề phải là 165 - 215
165 - 215
= (24)5 - 215
= 220 - 215
= 215 ( 25 - 1 )
= 215 . 31 chia hết cho 31
4. đề sai
1.A=5+52+....+5100
<=> 5A=52+53+.....+5101
<=> 5A-A=(52+53+....+5101)-(5+52+....+5100)
<=> 4A=5101-5
<=> \(A=\frac{5^{101}-5}{4}\)
2. Ta có : 4A=5101-5
<=> 4A+5=5101
Vậy x=101.
3. \(A=5+5^2+....+5^{100}\)
\(\Rightarrow A=\left(5+5^2+5^3+5^4\right)+...+\left(5^{97}+5^{98}+5^{99}+5^{100}\right)\)
\(\Rightarrow A=5.\left(1+5+25+125\right)+...+5^{97}.\left(1+5+25+125\right)\)
\(\Rightarrow A=5.165+....+5^{97}.165\)
\(\Rightarrow A=165.\left(5+...+5^{97}\right)\)
\(\Rightarrowđpcm\)
A= 5+5^2+5^3+...+5^11
= (5+5^2)+...+(5^10+5^11)
= 5(1+5)+....+5^10(1+5)
= 5.6+...+5^10.6
= (5+...+5^10).6 chia hết cho 6
\(A=5+5^2+5^3+5^4=....+5^{10}+5^{11}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{10}+5^{11}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{10}\left(1+5\right)\)
\(=5.6+5^3.6+....+5^{10}.6\)
\(=6\left(5+5^3+....+5^{10}\right)⋮6\left(ĐPCM\right)\)
Vậy \(A⋮6\)
Ta có: 45 + 99 + 180 chia hết cho 9
Vì 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)
= \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)
= \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)
= \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)
= \(31\cdot1+...+31\cdot5^{402}\)
= \(31\cdot\left(1+...+5^{402}\right)⋮31\)
Vậy tổng trên chia hết cho 31
=> B=(1+5+52)+(53+54+55)+...........+(5402+5403+5404)
=> B= 1.(1+5+52)+53.(1+5+52)+.........+5402.(1+5+52)
=> B=1.31+53.31+...........+5402.31
=> B=31.(1+53+........+5402)
Vì 31 chia hết cho 31 => 31.(1+53+............+5402) chia hết cho 31
=> B chia hết cho 31 ĐPCM
Bài 1
4n+5 \(⋮\) 2n+1
Ta có 4n+5 = 2(2n+1) + 3
Mà 2 (2n+1) \(⋮\) 2n+1 để 4n+5 \(⋮\) 2n+1
Thì => 3\(⋮\)2n+1 hay 2n+1 \(\in\) Ư (3(={1;3}
Ta có bảng sau
2n+1 | 1 | 3 |
n | 0 | 1 |
Vậy n\(\in\) {0;1}
Bài 2 :
a, chứng minh A chia hết cho 3
A = 21 + 22 + ...+ 22010
A = (21 +22 ) + (23 + 24 ) + ...+ (22009 + 22010 )
A= 21(1+2) + 23(1+2) + .....+ 22009(1+3)
A = 21 .3 + 23.3+....+22009.3
A = 3(21 + 23 + ...+ 22009) \(⋮\) 3
=> đpcm
b, chứng minh chia hết cho 7
A = 21 + 22 + ...+ 22010
A = ( 21 + 22 + 23 ) + .....+ (22008 + 22009 + 22010)
A = 21(1+2+22 ) + ....+ 22008(1+2+22)
A = 21.7 + ....+22008.7
A = 7(21+ ...+ 22008) \(⋮\) 7
=> đpcm
\(4n+5⋮2n+1\)
\(2\left(2n+1\right)+3⋮2n+1\)
\(3⋮2n+1\)hay \(2n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
2n + 1 | 1 | 3 |
2n | 0 | 2 |
n | 0 | 1 |
\(A=2+2^2+...+2^{2010}\)
\(=2\left(1+2\right)+...+2^{2019}\left(1+2\right)\)
\(=2.3+...+2^{2019}.3=3\left(2+...+2^{2019}\right)⋮3\)
hay \(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+...+2^{2008}.7=7\left(2+...+2^{2008}\right)⋮7\)
Nên ta có đpcm
Có : A = (3+3^3+3^3)+(3^4+3^5+3^6)+.....+(3^98+3^99+3^100)
= 3.(1+3+3^2)+3^4.(1+3+3^2)+.....+3^98.(1+3+3^2)
= 3.13+3^4.13+.....+3^98.13
= 13.(3+3^4+....+3^98) chia hết cho 13
=> ĐPCM
k mk nha
1 + 5 + 5^2 + ...+ 5^404
= ( 1 + 5 + 5^2 + 5^3) + ( 5^4 + 5^5+5^6+5^7) + ...+ ( 5^401+ 5^402+5^403+5^404)
= 31+ 5^4.31+...+ 5^401.31
= 31(1+5^4 +...+5^404)
=> đpcm