Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
hai số tự nhiên liên tiếp có 1 số lẻ và 1 số chẵn
mà số chẵn thì chia hết cho 2
trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
ví dụ :
1 , 2 , 3
59 , 60 , 61
.........
nhé !
a ) 2 stn liên tiếp có dạng : n và n + 1
nếu n chẵn suy ra n chẵn chia hết cho 2
nếu n lẻ n +1 là chẵn chia hết cho 2
b) 3 stn liên tiếp có dạng : n ; n+1 ;n+2
suy ra 3n + 3 chia hết cho 3
1. Gọi ba số tự nhiên liên tiếp là n , n + 1 và n + 2
=> Tổng của chúng là : n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3 ( đpcm )
2 . Trong 3 số tự nhiên liên tiếp có 1 trong 3 dạng 3k ; 3 + 1 ; 3k + 3
Vậy có 1 số chia hết cho 3 là 3k
trong các số tự nhiên liên tiếp khó tránh khỏi sự xuất hiện của chữ số 0 và 5
Nên sẽ có 1 số tự nhiên chia cho 5
a) Gọi các số tự nhiên đó là k, k + 1
+Nếu k chia hết cho 2 thì trong hai số đó k chia hết cho 2.
+Nếu k chia 2 dư 1 thì trong hai số đó k + 1 chia hết cho 2.
b) Gọi các số tự nhiên đó là k, k + 1, k + 2
+Nếu k chia hết cho 3 thì trong ba số đó k chia hết chi 3.
+Nếu k chia 3 dư 1 thì trong ba số đó k + 2 chia hết cho 3.
+Nếu k chia 3 dư 2 thì trong ba số đó k + 1 chia hết cho 3.
a, Hai số tự nhiên liên tiếp là số thứ nhất có thể là số chẵn ,số thứ hai là số lẻ hoặc số thứ nhất là số lẻ, số thứ hai là số chẵn
b, Trung bình cộng của ba số tự nhiên liên tiếp là chia cho 3 mà kết quả đó cũng là số thứ hai
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
TH1 nếu a chia hết cho 3
=> a có dạng 3k
=>a+1=3k+1(ko chia hết cho 3)
=>a+2=3k+2(ko chia hết cho 3)
Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3
TH2 a+1 chia hết cho 3
=>a+1 có dạng 3k
=>a=3k-1 (ko chia hết cho 3)
=>a+2=3k+1(ko chia hết cho 3)
=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3
TH3 (làm tương tự nha bạn)
b,Tick rồi mình làm tiếp cho
Chứng minh tổng 2 số lẻ chia hết cho 2 .
Ta gọi 2 số lẻ là 2k + 1 và 2q + 1.
=> tổng của 2 số lẻ là :
2k + 1 + 2q + 1 = 2(k + q) + 2
= 2(k + p + 2) chia hết cho 2.
Vậy...
Còn chứng minh 3 số liên tiếp chia hết cho 3 bạn gọi các số là 3k + 1 , 3k + 2 , 3k + 3 rồi tự nghĩ nha.
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
Ba số tự nhiên liên tiếp: n;(n+1);(n+2) (1)
Giả sử: n là một số tự nhiên chia hết cho 3 => n =3k
thay n= 3k vào (1) : 3k ;(3k +1); (3k+2) -----có 3k chia hết cho 3
(n+1) ; (n+2); (n+3) (2)
thay n = 3k vào (2) : (3k+1); (3k +2); (3k +3) ------ có 3k + 3 chia hết cho 3
.......
Gọi 3 STN liên tiếp là a,a+1,a+2
Nếu a chia hết cho 3 thì bài toán được CM
Nếu a=3k+1(k là STN)=> a+2=3k+3 chia hết cho 3
Nếu a=3k+2(k là STN)=> a+1=3k+3 chia hết cho 3
Vậy