K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Gọi hai số nhiên liên tiếp là n và n + 1(n N ) .
Đặt (n, n + 1) = d n d; n + 1 d. Do đó (n + 1) – n d hay 1 d suy ra d = 1.
vậy n và n + 1 là hai số nguyên tố cùng nhau.

Đây là cách rất gọn và dễ 

k mk nha

Mk cảm ơn các bạn nhiều

Thank you very much

( ^ _ ^ )

10 tháng 12 2016

Gọi 2 số tự nhiên liên tiếp là a và a+1

Gọi ước chung lớn nhât của a và a+ 1 là d

Ta có a chia hết cho d 

         a+ 1 chia hết cho d

=> (a+1)-a chia hết cho d

a + 1 - a = 1 nên suy ra d =1(vì 1 chỉa chia hết cho 1)

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau

11 tháng 11 2015

a,gọi 2 STN liên tiếp là a và a+1

gọi ước chung của hai số là d. Ta có:

       (a+1)-a chia hết cho d

  =>1 chia hết cho d=>d=1

Vậy a và a+1 nguyên tố cùng nhau

b,gọi hai STN lẻ liên tiếp là a và a+2.Gọi ước chung của hai số là d

Ta có: (a+2)-a chhia hết cho d

      =>2 chia hết cho d

=>d=1 hoặc 2

d khác 2 vì d là ước của số lẻ

Vậy d=1 =>a và a+2 nguyên tố cùng nhau

tick đi

19 tháng 1 2016

Gọi 2 số tự nhiên liên tiếp là n và n+1.Gọi d thuộc Ư(n;n+1)

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 2 số tự nhiên liên tiếp thì nguyên tố cùng nhau

19 tháng 1 2016

Vì 2 số tự nhiên liên tiếp ko chia hết cho nhau

3 tháng 1 2016

2n+3 co tan cung la 1 so le

Ma 4n+8 thuoc dang 4k la so chan => 2 so tren la uoc nguyen to cung nhau

2n+3:d=> 4n+6:d

=> 4n+8-4n+6:d

=>2:d

Ma 2n+3 la so le

=> 2 so tren la so nguyen to cung nhau

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

12 tháng 11 2018

mk sẽ gửi link cho bạn ở nhắn tin,hok lớp 9 rồi nhưng mà tích cái này

Gọi ƯCLN(7n+10;5n+7)=a

Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a

=> 35n+50 chia hết cho a (1)

            5n+7 chia hết cho a => 7(5n+7) chia hết cho a

=> 35n + 49 chia hết cho a (2)

Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a

=> 1 chia hết cho a

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

tick ủng hộ nha

 

24 tháng 12 2015

gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3; ƯCLN(2k+1;2k+3)

ta có : 2k+1 chia hết cho d

2k+3 chia hết cho d

-> 2k+3-(2k+1) chia hết cho d

-> 2k+3-2k-1 chia hết cho d

-> 2 chia hết cho d

vậy d thuộc Ư(2)={ 1;2 }

vì 2k+1 và 2k+3 là 2 số lẻ liên tiếp nên d không thể bằng 2

-> d=1

vậy 2k+1;2k+3 là 2 số nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau (đpcm)