K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

Cả trọng tâm, trực tâm, tâm đường tròn ngoại tiếp và điểm cách đều 3 cạnh đều là 1 điểm trong tam giác

=>3 đường trung tuyến, phân giác, trung trực, đường cao của tam giác đó cùng đồng quy (giao nhau) tại 1 điểm

13 tháng 5 2016

Dựa vào sách giáo khoa ý

13 tháng 5 2016

A B C D Cả 4 câu đều là 1 hình như thế này, chỉ có kí hiệu khác nhau, bạn tự dựa vào nội dung câu hỏi mà kí hiệu lên hình nhé.

Câu 1:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

DB= DC

=> tam giác ABD = tam giác ACD (2 cạnh góc vuông)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 2:

Chứng minh y chang câu 1

Câu 3:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

BAD = CAD

=> tam giác ABD = tam giác ACD (cạnh góc vuông_ góc nhọn)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 4:

Chứng minh giống hệt câu 3.

17 tháng 9 2023

Gọi M, N, P lần lượt là các trung điểm của các đoạn thẳng BC, AC, AB.

Ta có: G là giao điểm của ba đường trung tuyến trong tam giác ABC.

Mà cũng là giao điểm của ba đường trung trực trong tam giác ABC nên AM, BN, CP là các đường trung trực của tam giác ABC hay \(AM \bot BC;BN \bot AC;CP \bot AB\).

Xét tam giác ABM và tam giác ACM có:

     AM chung;

     \(\widehat {AMB} = \widehat {AMC} (= 90^\circ \))(vì \(AM \bot BC\));

     BM = MC (M là trung điểm của BC).

Vậy \(\Delta ABM = \Delta ACM\)(c.g.c). Suy ra: AB = AC ( 2 cạnh tương ứng). (1)

Tương tự ta có:

     \(\Delta BNA = \Delta BNC\)(c.g.c). Suy ra: AB = BC( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều.

6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

17 tháng 4 2019

Äá» há»c tá»t Toán 7 | Giải toán lá»p 7

​Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác

vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC

xét 2 tam giác vuông ABI và tam giác vuông ACI có;

IA chung

góc BAI=gócCAI (do AI là phân giác)

do đó tam giác BAI =tam giác CAI

suy ra AB=AC (2 cạnh tương ứng)

suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)

17 tháng 9 2023

a)

Ta có:

     G là trọng tâm của tam giác ABC (giao điểm của ba đường trung tuyến);

     H là trực tâm của tam giác ABC (giao điểm của ba đường cao);

     I là giao điểm của ba đường phân giác của tam giác ABC;

     O là giao điểm của ba đường trung trực của tam giác ABC (Đường trung trực đi qua trung điểm của cạnh và vuông góc với cạnh tại trung điểm đó).

Mà tam giác ABC đều nên trong tam giác ABC đường trung tuyến đồng thời là đường cao và là đường phân giác.

Vậy bốn điểm G, H, I, O trùng nhau hay nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau.

b) 

 

Giả sử trong tam giác ABC có hai điểm trùng nhau là H (trực tâm của tam giác) và I (giao của ba đường phân giác).

Hay AD, BE, CF vừa là đường cao, vừa là đường phân giác của tam giác ABC.

Xét tam giác ADB và tam giác ADC có:

\(\widehat {BAD} = \widehat {CAD}\) ( vì AD là tia phân giác của góc BAC)

AD chung;

\(\widehat {ADB} = \widehat {ADC}(=90^0)\) (vì \(AD \bot BC\));

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta AEB = \Delta CEB\)(c.g.c). Suy ra: AB = BC ( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều hay nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.

17 tháng 9 2023

Ta có: I là giao điểm của ba đường phân giác của tam giác ABC. Đồng thời là giao điểm của ba đường trung trực tam giác ABC nên: \(ID \bot BC;IE \bot AC;IF \bot AB\).

Xét tam giác ADB và tam giác ADC có:

     \(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);

     AD chung;

     \(\widehat {ADB} = \widehat {ADC}(=90^0)\)(vì \(ID \bot BC\)).

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC ( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta BEA = \Delta BEC\)(g.c.g). Suy ra: BA = BC ( 2 cạnh tương ứng)(2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều.

25 tháng 1 2017

Chọn (D) Ba đường cao.