Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 + y3 = x3 + (1 - x)3 = 3x2 - 3x + 1 = 3 (x2 - 2.x.1/2 + 1/4) + 1 - 3/4 = 3(x-1/2)2 + 1/4 >= 1/4
Dấu "=" xảy ra khi x=1/2; y= 1/2
~ Đây là bài giải, xin lỗi nảy mình nhìn lầm
By Bunhiacopski inequilities we EZ to :
\(\left(3a^2+b^2\right)\left(\frac{1}{3}+1\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\left(3a^2+b^2\right)\cdot\frac{4}{3}\ge1\Rightarrow3a^2+b^2\ge\frac{3}{4}\)
Done !
Ta có : Phân số cuối cùng là phân số có mẫu chứa thừa số 2 có số lớn nhất là \(2^4\). Khi ta quy đồng mẫu, mẫu chung là 1 số chia hết cho \(2^4\), các thừa số phụ đều chia hết cho 2 trừ thừa số phụ của phân số cuối cùng do đó tổng của các tử mới không chia hết cho 2 mà trong khi đó mẫu là 1 số chia hết cho 2 \(\Rightarrow\)Tỏng trên không phải là số tự nhiên.
\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{100-1}{100!}=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+..+\frac{100}{100!}-\frac{1}{100!}\)
\(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{99!}-\frac{1}{100!}=1-\frac{1}{100!}<1\)
=> ĐPCM
\(a+b=1\Rightarrow b=1-a\Rightarrow b^2=\left(1-a\right)^2\)
\(\Rightarrow3a^2+b^2=3a^2+\left(1-a\right)^2=4a^2-2a+1\)
Mà \(4a^2-2a+1=\left(2a\right)^2-2.2a.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(2a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\left(đpcm\right)\)
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath