K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên  A B A ' B ' = A C A ' C ' = B C B ' C ' = k

Suy ra  A ' B ' A B = A ' C ' A C = B ' C ' B C = 1 k

Áp dụng tính chất dãy tỉ số bằng nhau ta có

A ' B ' A B = A ' C ' A C = B ' C ' B C = A ' B ' + A ' C ' + B ' C ' A B + A C + B C = 1 k

Vậy tỉ số chu vi của tam giác A’B’C’ và ABC là  1 k

Đáp án: B

27 tháng 1 2019

Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên  A B A ' B ' = A C A ' C ' = B C B ' C ' = k

Ta có:

A B A ' B ' = A C A ' C ' = B C B ' C ' = A B + A C + B C A ' B ' + A ' C ' + B ' C ' = P A B C P A ' B ' C ' = k

Vậy tỉ số chu vi của hai tam giác là k.

Đáp án: C

19 tháng 3 2020

A B C D E A' B' C'

+ Dựng ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3

Trên AB lấy D, trên AC lấy E sao cho \(AD=\frac{2}{3}AB;AE=\frac{2}{3}AC\)

Suy ra : \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{2}{3}\)

Khi đó theo định lý Ta-let đảo ta suy ra DE // BC

⇒ ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3.

+ Dựng ΔA’B’C’ = ΔADE

Vẽ đoạn A’B’ = AD.

Dựng góc  \(\widehat{A'B'x}=\widehat{ADE}\)

Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.

Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)

Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:

\(k_1=\frac{A'B'}{AD}=1\)

Mà tam giác ADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lá»p 8tam giác ABC theo tỉ số

\(k_2=\frac{AD}{AB}=\frac{2}{3}\)

=> Tam giác A'B'C' Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lá»p 8tam giác ABC theo tỉ số 

\(k=k_1.k_2=\frac{A'B'}{AB}=\frac{2}{3}\)

2 tháng 4 2019

\(\Delta ABC\infty\Delta DEF\Rightarrow\frac{SABC}{SDEF}=4^2=16\)

\(\Rightarrow SDEF=\frac{SABC}{16}=\frac{100}{16}=6,25\)

8 tháng 4 2020

Vì mình chưa đc làm CTV nên kh đăng ảnh lên được , bạn thông cảm :

Bạn vào thống kê hỏi đáp mình là có ảnh nhé

Tham khảo thêm : https://lazi.vn/edu/exercise/406693/chung-minh-rang-neu-tam-giac-abc-dong-dang-voi-tam-giac-abc-theo-ti-so-k-thi-ti-so-cua-hai-duong-trung-tuyen-tuong-ung-cua-hai-tam

8 tháng 4 2020

https://lazi.vn/edu/exercise/406693/chung-minh-rang-neu-tam-giac-abc-dong-dang-voi-tam-giac-abc-theo-ti-so-k-thi-ti-so-cua-hai-duong-trung-tuyen-tuong-ung-cua-hai-tam

Tham Khảo link trên nha bn