K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

a)  cos5x=cos5x-10cos3xsin2x+5cosxsin4x

b)  cos8x-28cos6xsin2x+70cos4xsin4x-28cos2xsin6x+sin8x

c)  6cos5xsinx-20cos3xsin3x+6cosxsin5x

d)  7cos6xsinx-35cos4xsin3x+21cos2xsin5x-sin7x

HOK TỐT

31 tháng 7 2015

a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0

b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0

c) sinx - cosx = sinx - sin(90-x)

Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0

Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0

d) Tương tự câu c)

 

2 tháng 5 2021

undefined

NV
24 tháng 10 2019

\(A=sin^230+sin^260+sin^240+sin^250\)

\(=sin^230+cos^2\left(90-60\right)+sin^240+cos^2\left(90-50\right)\)

\(=sin^230+cos^230+sin^240+cos^240\)

\(=1+1=2\)

\(B=\frac{sinx+cosx}{sinx-cosx}=\frac{\frac{sinx}{sinx}+\frac{cosx}{sinx}}{\frac{sinx}{sinx}-\frac{cosx}{sinx}}=\frac{1+cotx}{1-cotx}=\frac{1+2}{1-2}=-3\)

1 tháng 8 2019

Cho góc nhọn a mà biểu thức ghi x thì hơi lạ nha =))

(Mình giải theo biểu thức nha)

\(A=\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\\ =\sin^2x+2\sin x\cdot\cos x+\cos^2x+\sin^2x-2\sin x\cdot\cos x+\cos^2x\\ =2\sin^2x+2\cos^2x\\ =2\left(\sin^2x+\cos^2x\right)\\ =2\cdot1=2\)

20 tháng 8 2021

a) Đặt \(sinx+cosx=t\left(\left|t\right|\le\sqrt{2}\right)\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

=> pt có dạng: \(t=\sqrt{2}\left(t^2-1\right)\Leftrightarrow\sqrt{2}t^2-t-\sqrt{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{-\sqrt{2}}{2}\\t=\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}sinx+cosx=\frac{-\sqrt{2}}{2}\\sinx+cosx=\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}sin\left(x+\frac{\pi}{4}\right)=\frac{-1}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{\pi}{4}=\frac{-\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{7\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5\pi}{12}+2k\pi\\x=\frac{11\pi}{12}+2k\pi\\x=\frac{\pi}{4}+2k\pi\end{cases}}\left(k\inℤ\right)}\)

30 tháng 8 2018

\(A=a^3-b^3-ab\)

   \(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

   \(=a^2+ab+b^2-ab\) (vì \(a-b=1\))

   \(=a^2+b^2\)

   \(=a^2+\left(a-1\right)^2\)

   \(=2a^2-2a+1\)

  \(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)

  \(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)

Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)

Chúc bạn học tốt.

4 tháng 10 2018

Không biết có đúng không nữa, bạn tham khảo ạ

\(x< 90^0\)

\(\Rightarrow tanx=2\)

\(\Leftrightarrow\dfrac{sinx}{cosx}=2\Leftrightarrow sinx=2.cosx\)

\(A=\dfrac{sinx-cosx}{sinx+cosx}=\dfrac{2cosx-cosx}{2cosx+cosx}=\dfrac{cosx}{3cosx}=\dfrac{1}{3}\)

Tự kết luận nha bạn ^^

18 tháng 8 2018

a) ta có : \(sin^2x+cos^2x=1\Leftrightarrow\dfrac{9}{25}+cos^2x=1\Leftrightarrow cos^2x=\dfrac{16}{25}\)

\(\Rightarrow cosx=\pm\dfrac{4}{5}\)

ta có : \(tanx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{3}{5}}{\pm\dfrac{4}{5}}=\pm\dfrac{3}{4}\) \(\Rightarrow cot=\dfrac{1}{tan}=\dfrac{1}{\pm\dfrac{3}{4}}=\pm\dfrac{4}{3}\)

vậy ................................................................................................

b) ta có : \(tanx=\sqrt{3}\Leftrightarrow cotx=\dfrac{1}{tanx}=\dfrac{1}{\sqrt{3}}\)

ta có : \(\dfrac{sin^2x+cos^2x}{cos^2x}=1+tan^2x\Leftrightarrow\dfrac{1}{cos^2x}=1+tan^2x\)

\(\Leftrightarrow\dfrac{1}{cos^2x}=1+\left(\sqrt{3}\right)^2=4\Rightarrow cos^2x=\dfrac{1}{4}\) \(\Leftrightarrow cos^2x=\pm\dfrac{1}{2}\)

ta có : \(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\Rightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

vậy .............................................................................................

câu c bn làm tương tự câu a ; còn câu d bn làm tương tự câu b nha :)