K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

1 : 3 = 0 dư 1

2 : 3 = 0 dư 2

3 : 3 = 1 dư 0 = 1

26 tháng 6 2016

a = 3k + 1 (k thuộc N)

và a = 3m + 2 (m thuộc N)

20 tháng 11 2015

NHầm 3k + 1 hoặc 3k + 2       

16 tháng 8 2021

Giả sử a chia 4 dư 1; b chia 4 dư 2; c chia 4 dư 3 ta có

\(\left(a-1\right)⋮4;\left(b-2\right)⋮4;\left(c-3\right)⋮4\)

\(\Rightarrow\left(a-1\right)+\left(b-2\right)+\left(c-3\right)⋮4\)

\(\Rightarrow\left(a+b+c\right)-2-4⋮4\)

\(\Rightarrow\left(a+b+c\right)-2⋮4\)

\(\Rightarrow\left(a+b+c\right)-2⋮2\Rightarrow a+b+c⋮2\)

20 tháng 7 2017

vì 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 có các số dư khác nhau nên số dư lần lượt là 1;2;3;4

các số đó là: (a+1)+(a+2)+(a+3)+(a+4)

=> 4a+(1+2+3+4)

=> 4a+10

vì 4a chia hết cho 5

   10 cũng chia hết cho 5

nên 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chho 5 có các số dư khác nhau sẽ chia hết cho 5

tk mk nha

20 tháng 7 2017

Do 4 số tự nhiên không chia hết cho 5 và chia cho 5 có các số dư lần lượt 1;2;3;4.

Gọi 4 số tự nhiên đó là (a+1)+(a+2)+(a+3)+(a+4)    ( a thuộc N)

=> 4a+(1+2+3+4)

=> 4a+10

Do 10 chia hết cho 5

=> 4a cũng chia hết cho 5

Vậy 4 số tự nhiên không chia hết cho 5 nhưng khi chia 5 cho tổng các số dư khác nhau của nó sẽ chia hết cho 5

26 tháng 9 2016

1. a chia cho 12 dư 8

=>a=12.k+8

=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)

a không  chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.

26 tháng 9 2016

bít lm lâu ồibanhqua

29 tháng 11 2015

 

Gọi 4 số N  liên tiếp đó  là 

5n+1; 5n+2;5n+3 và 5n+4

Ta có : 5n+1 +5n+2+5n+3+5n+4 = 20n +(1+2+3+4) = 20n +10  chia hết cho 5 ( dpcm)

29 tháng 11 2015

dễ mà bạn 

vì 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 được các số dư khác nhau nên số dư lần lượt là:1;2;3;4

các số đó là : (a+1)+(a+2)+(a+3)+(a+4) 

=>4a+(1+2+3+4)

=>4a+10

vì 4a chia hết cho 5

  10 cũng chia hết cho 5

nên 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 được các số dư khác nhau sẽ chia hết cho 5

 

10 tháng 10 2015

ta có: 5 số tự nhiên chia cho 5 ra các số dư khác nhau là:

5k+1;5k+2;5k+3;5k+4

ta có:

(5k+1)+(5k+2)+(5k+3)+(5k+4)=5k.4+10 tất nhiên là sẽ chia hết cho 5