K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Hai góc đối đỉnh thì bằng nhau

>> Cái này có trog sgk mak bạn -,- <<

22 tháng 10 2017

minh wen

19 tháng 8 2021

a, \(\dfrac{1-sin2a}{1+sin2a}\)

\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)

\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)

\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)

19 tháng 8 2021

b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)

\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)

\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)

\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)

\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)

\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)

NV
24 tháng 3 2021

Gọi số dinh dưỡng A cần là x và số dinh dưỡng B cần là y

Ta có hệ điều kiện: \(\left\{{}\begin{matrix}4\le x+y\le10\\0\le x\le6\\0\le y\le5\\\dfrac{x}{2}\le y\le3x\end{matrix}\right.\) (1)

Hàm chi phí: \(f\left(x;y\right)=8x+7y\)

Phần đồ thị biểu diễn miền hệ điều kiện (1) là phần đa giác ABCDEF như bên dưới:

Trong đó \(A\left(\dfrac{5}{3};5\right)\) ; \(B\left(5,5\right)\) ; \(C\left(6;4\right)\) ; \(D\left(6;3\right)\) ; \(E\left(\dfrac{8}{3};\dfrac{4}{3}\right)\) ; \(F\left(1;3\right)\)

undefined

Thay tọa độ của 6 điểm trên vào hàm \(f\left(x;y\right)\) và tính giá trị, ta thấy \(f\left(x;y\right)\) nhỏ nhất tại \(F\left(1;3\right)\) tức cần 1 dinh dưỡng A và 3 dinh dưỡng B để chi phí nhỏ nhất

24 tháng 3 2021

tóm tắt sương sương

1 ngày x-A

y-B  Nên 8x+7y min

\(\left\{{}\begin{matrix}4\le x+y\le10\\0\le x\le6\\0\le y\le5\\\dfrac{1}{2}x\le y\le3x\end{matrix}\right.\)

nhìn đề hơi loại ạ

3 tháng 1 2021

1) Trong he toa do Oxy, cho tam giac ABC co A(2;2), B(-5;3), C(-2;4). Goi H (x;y) la hinh chieu cua dinh A len duong thang BC. Tinh gia tri cua bieu thuc P = x2 + y2

                                                   Giải

- H là hình chiếu của A lên BC nên ta có: \(\overrightarrow{AH}.\overrightarrow{BC}=0\)

=> 3.(x-2) + 1.(y-2) = 0 <=> 3x + y =8 (1) 

- H nằm trên đoạn BC nên : B,H,C thẳng hàng.

=> BH = kBC 

=> \(\dfrac{x+5}{3}=\dfrac{y-3}{1}=x-3y=-14\)(2)

Từ (1) và (2) ta có hệ phương trình, giải hệ ta được: x=1, y=5.

Suy ra : x^2 + y^2 = 26 chọn B.

3 tháng 9 2017

1.Bình phương của 1 tổng bằng bình phương số thứ 1 cộng hai lần tích của số thứ nhất với số thứ hai cộng bình phương số thứ hai

2.Bình phương của 1 hiệu bằng bình phương số thứ 1 trừ 2 lần tích số thứ nhất với số thứ 2 cộng với bình phương số thứ 2.

3.Hiệu 2 bình phương bằng tích của tổng 2 số với hiệu 2 số.

4.Lập phương của 1 tổng bằng lập phương số thứ 1 + 3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 + lập phương số thứ 2.

5. Lập phương của 1 tổng bằng lập phương số thứ 1 -3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 - lập phương số thứ 2.

6.Tổng hai lập phương bằng tích giữa tổng 2 số với bình phương thiếu của 1 hiệu.

7.Hiệu 2 lập phương bằng tích giữa hiệu hai số với bình phương thiếu của 1 tổng.

ko hiểu đề bài cho lắm >:( hum

17 tháng 10 2021

\(\dfrac{-4^2+4\cdot1\cdot c}{4\cdot1}=\dfrac{5}{4}\)

\(\Leftrightarrow4\left(-16+4c\right)=20\)

\(\Leftrightarrow4c-16=5\)

hay \(c=\dfrac{21}{4}\)

27 tháng 10 2022

 

loading...

Tọa độ đỉnh B là:

\(\left\{{}\begin{matrix}x_B-2=2\\y_B+\dfrac{9}{2}=10\end{matrix}\right.\Leftrightarrow B\left(4;\dfrac{11}{2}\right)\)

Tọa độ đỉnh D là:

x=-3-(-2)=-1 và y=6-9/2=3/2

Tọa độ đỉnh C là:

x=7-2=5 và y=9/2-2=5/2

8 tháng 4 2021

Đăng vào phần lớp 8 ấy, thế này kh ai giải cho đâu.

a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABF}=\widehat{ACE}\)

Xét ΔABF và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABF}=\widehat{ACE}\)(cmt)

BF=CE(gt)

Do đó: ΔABF=ΔACE(c-g-c)

Suy ra: AF=AE(Hai cạnh tương ứng)

Xét ΔAFE có AF=AE(Cmt)

nên ΔAFE cân tại A(Định nghĩa tam giác cân)