Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
• Đường trung bình của tam giác song song với cạnh thứ 3 và bằng nửa cạnh ấy.
• Đường trung bình của hình thang song song với 2 đáy và bằng nửa tổng 2 đáy.
Giả sử hình thang ABCD, đường trung bình MN \(\left(M\in AD;N\in BC\right)\) và AC cắt MN tại P
Ta có \(\left\{{}\begin{matrix}MP+PN=10\\MP-PN=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}MP=\left(10+2\right):2=6\left(cm\right)\\PN=10-6=4\left(cm\right)\end{matrix}\right.\)
Vì MN là đtb nên: \(MN//AB//CD;MN=\dfrac{AB+CD}{2}.hay.AB+CD=2MN=20\)
\(\left\{{}\begin{matrix}AM=MD\\MP//CD\end{matrix}\right.\Rightarrow AP=PC\Rightarrow PM\) là đtb \(\Delta ADC\)
\(\Rightarrow2PM=DC\Rightarrow DC=2\cdot6=8\left(cm\right)\\ \Rightarrow AB=20-8=12\left(cm\right)\)
Vậy 2 đáy hình thang là 8;12(cm)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà E\(\in\)BC và \(BE=\dfrac{BC}{2}\)
nên MN//BE và MN=BE
Xét tứ giác BMNE có
MN//BE
MN=BE
Do đó: BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AM=MB
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên HN=AN=NC
Ta có: HM=AM
nên M nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: HN=AN
nên N nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra MN là đường trung trực của AH
b: Xét ΔBAC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung trực của ΔBAC
Suy ra: ME//AC và \(ME=\dfrac{AC}{2}\)
mà \(AN=\dfrac{AC}{2}\)
nên ME=AN
mà AN=HN
nên HN=ME
Xét tứ giác HMNE có
MN//HE
nên HMNE là hình thang
Hình thang HMNE có HN=ME
nên HMNE là hình thang cân
- Đường trung bình của tam giác:
+ Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
+ Định lí 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
- Đường trung bình của hình thang:
+ Định lí 3: Đường thẳng đi qua trung điểm của một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
+ Định lí 4: Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.