Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”
Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”
Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”
Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”
a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”
c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x = - \frac{1}{2} \notin \mathbb{Z}\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”
a) Mệnh đề sai, vì chỉ có \(x = - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.
b) Mệnh đề đúng, vì \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”
c) Mệnh đề sai, vì có \(a = - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}} = 2 \ne a\)
Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}} \ne a\)”.
a) Mệnh đề “\(\forall x \in \mathbb{N},{x^3} > x\)” sai vì \(0 \in \mathbb{N}\) nhưng \({0^3} = 0.\)
b) Mệnh đề “\(\exists x \in \mathbb{Z},x \notin \mathbb{N}\)” đúng, chẳng hạn \( - 2 \in \mathbb{Z}, - 2 \notin \mathbb{N}.\)
c) Mệnh đề “\(\forall x \in \mathbb{R},\) nếu \(x \in \mathbb{Z}\) thì \(x \in \mathbb{Q}\)” đúng vì \(\mathbb{Z} \subset \mathbb{Q}.\)
a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).
b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} > 2.2 - 1\) hay \(4 > 3\) (luôn đúng).
c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).
d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.
A. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > - 1\)
Sai, chẳng hạn với \(x = - 2\) thì \({x^2} = 4 > 1\) nhưng \(x = - 2 < - 1\).
B. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > 1\)
Sai, chẳng hạn với \(x = - 2\) thì \({x^2} = 4 > 1\) nhưng \(x = - 2 < 1\).
C. \(\forall x \in \mathbb{R},x > - 1 \Rightarrow {x^2} > 1\)
Sai, chẳng hạn với \(x = 0 > - 1\) nhưng \({x^2} = 0 < 1\)
D. \(\forall x \in \mathbb{R},x > 1 \Rightarrow {x^2} > 1\)
Đúng.
Chọn đáp án D
Phát biểu: “Với mọi số thực, tổng của bình phương của nó và 1 luôn nhỏ hơn hoặc bằng 0”
Mệnh đề này sai, vì \(\forall x \in :{x^2} \ge 0\; \Rightarrow {x^2} + 1 \ge 1 > 0\)
a) Hiển nhiên: C, D là các tập con của \(\mathbb{R}\).
Vậy mệnh đề này đúng.
b) Mệnh đề “\(\forall x,\;x \in C \Rightarrow x \in D\)” sai. Vì \(3 \in C\) nhưng \(3 \notin D\);
c) Mệnh đề “\(3 \in C\) nhưng \(3 \notin D\)” đúng;
d) Mệnh đề “\(C = D\)” sai vì \(3 \in C\) nhưng \(3 \notin D\).
a) Mọi số thực có bình phương không âm.
b) Có một số thực nhỏ hơn nghịch đảo của chính nó.
a. P:" Với mọi số thực x thì bình phương của nó luôn lớn hơn hoặc bằng 0"
b, A:"Tồn tại ít nhất một số thực x mà nghịch đảo của nó lớn hơn chính nó"