Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a = 1; b’ = m + 3; c = m 2 + 3
Δ'= b ' 2 - ac = m + 3 2 - ( m 2 + 3) = m 2 + 6m + 9 - m 2 - 3 = 6m + 6
a) Khi a = 2, ta có hệ phương trình
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (7/5; 4/5)
a)
Vậy hệ phương trình có nghiệm duy nhất là (x; y) = (1; -3)
\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)
\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)
\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)
Chắc tới đây bạn làm đc rồi nhỉ
a) x 2 - 7x + 5 = 0
Δ = 7 2 - 4.1.5 = 49 - 20 = 29 > 0
⇒ Phương trình đã cho có 2 nghiệm phân biệt
Vậy hệ phương trình đã cho có tập nghiệm
x - 3 2 + x + 4 2 = 23 - 3x
⇔ x 2 - 6x + 9 + x 2 + 8x + 16 = 23 - 3x
⇔ 2 x 2 + 5x - 2 = 0
Ta có: a = 2; b = 5; c = -2
Δ = b 2 - 4ac = 5 2 - 4.2.(-2) = 41 > 0
⇒ phương trình đã cho có 2 nghiệm phân biệt
Vậy tập nghiệm của phương trình là