Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có:
A B 2 + A C 2 = 6 2 + 8 2 = 100 = B C 2
Tam giác ABC vuông tại A.
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
a: BC=10cm
AH=4,8cm
BH=3,6cm
b: Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}=53^0\)
a) Xét tam giác ABC vuông tại A có:
A B 2 + A C 2 = B C 2 ⇒
Ta có:
AH.BC = AB.AC ⇒
sinB = AC/BC = 4/5 ⇒ ∠B = 53 , 1 0
⇒ ∠C = 90 0 - ∠B = 36 , 9 0
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC:
\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)
\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)
Pitago tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ACH:
\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)
Tiếp tục là hệ thức lượng:
\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)
\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
c:
Sửa đề: AP là phân giác của góc BAC
Xét tứ giác AEPF có
\(\widehat{AEP}=\widehat{AFP}=\widehat{FAE}=90^0\)
=>AEPF là hình chữ nhật
Hình chữ nhật AEPF có AP là phân giác của góc FAE
nên AEPF là hình vuông
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:
B C 2 = A B 2 + A C 2 = 6 2 + 8 2 = 36 + 64 = 100 (cm)
Suy ra: BC = 100 = 10 (cm)
Ta có: sinC = AB/BC = 6/10 = 0,6
Ta có:
A B 2 = 6 2 = 36 A C 2 = 4 , 52 = 20 , 25 B C 2 = 7 , 52 = 56 , 25
Vì A B 2 + A C 2 = 36 + 20,25 = 56,25 = B C 2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
a) Xét tam giác ABC vuông tại A có:
B C 2 = A B 2 + A C 2 = 6 2 + 8 2 = 100
⇒ BC = 10 (cm)
∠B + ∠C = 90 0 ⇒ ∠C = 90 0 - 53 , 1 0 = 36 , 9 0