Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
y = - x 2 | -4 | -1 | 0 | -1 | -4 |
Đồ thị hàm số y = - x 2 là một đường parabol nằm phía dưới trục hoành, nhận trục Oy làm trục đối xứng, nhận gốc O (0; 0) làm đỉnh và là điểm cao nhất.
Tọa độ giao điểm của (d) và (d') là nghiệm của hệ phương trình:
Cho hàm số
Vậy tọa độ giao điểm của (d) và (d') là (3/2; 3/2)
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Gọi A là giao của (d1) và (d2)
⇒ x + 3 = 3x - 1 ⇔ 2x = 4 ⇔ x = 2 ⇒ y = 5
Nên A (2; 5)
Để 3 đường thẳng đồng quy thì (d3) đi qua A.
⇔ 2m + 2m - 1 = 5
⇔ \(m=\dfrac{3}{2}\)
Vậy với m = 3/2 thì 3 đường thẳng đã cho đồng quy
a) Hai đường thẳng (d) và (d') song song khi