Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ \(P\left(x\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\Rightarrow P\left(x\right)<0\)
b/ \(Q\left(x\right)=-\left(9x^2-24x+16+32\right)=-\left[\left(3x-4\right)^2+32\right]\)
Tương tự như câu a => Q(x)<0
2/
b/ \(B=-\left(x^2-4x+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)
Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-5\ge-5\Rightarrow-\left[\left(x-2\right)^2-5\right]\le5\)
=> GTLN(B)=5
c/ Nhân phá ngoặc, rút gọn được
\(C=-x^2\left(x^2+10x+25\right)+36=-x^2\left(x+5\right)^2+36\)
Lý luận tượng tự câu b => \(C\le36\)
=> GTLN(C)=36
Denta = (a + b )^2 - 4(-2(a^2 -ab + b^2))
= a^2 + ab+ b^2 +8a^2 -8ab + 8b^2
=9a^2 + 9b^2 - 7ab
=2( 4a^2 - 4ab + b^2 ) + (a^2 + ab + b^2/4) + 27/4
=2(2a - b)^2 + (a + b/2)^2 + 27/4 lớn hơn 0 với mọi a, b
Vậy pt luôn có nghiệm
a
tick cho mik rùi mik làm cho nha
\(A=x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^3-1\right)\)
\(=x^3.\left(x^2+x+1\right)-\left(x-1\right).\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right).\left(x^3-x+1\right)\)