Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=x2-2x+1-y2-2y-1
=(x-1)2-(y+1)2
=(x-1+y+1)(x-1-y-1)=(x+y)(x-y-2)
a) x^2 - 4 + ( x - 2 )^2
= ( x- 2 )(x + 2 ) + ( x- 2)^2
= ( x - 2 ) ( x + 2 + x - 2 )
= 2x (x-2)
b) x^3 - 2x^2 + x - xy^2
= x ( x^2 - 2x + 1 - y^2)
= x [ ( x - 1 )^2 - y^2 ]
= x(x - 1 - y)( x - 1 + y )
c) x^3 - 4x^2 - 12x + 27
= x^3 + 3x^2 - 7x^2 - 21x + 9x + 27
= x^2 ( x + 3 ) - 7x ( x+ 3 ) + 9(x + 3 )
Để hai lần nha
= ( x+ 3 )(x^2 - 7x + 9 )
\(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=2x\left(x-2\right)\)
hk tốt
^^
a) \(x^2-2x-4y^4-4y^2=\left(x^2-2x+1\right)-\left(4y^4+4y^2+1\right)\)
\(=\left(x-1\right)^2-\left(2y^2+1\right)^2=\left(x-2y^2-2\right)\left(x+2y^2\right)\)
b) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) \(x^3+2x^2+2x+1=x^3+x^2+x^2+x+x+1\)
\(=x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d) \(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2\)
\(=a^2b^2+a^2+b^2+1\)
\(=\left(a^2+1\right)\left(b^2+1\right)\)
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
a) x2- 2x - 4y2 - 4y = (x2 - 2x + 1) - (4y2 + 4y + 1) = (x - 1)2 - (2y + 1)2 = (x - 1 - 2y - 1)(x - 1 + 2y + 1) = (x - 2y - 2)(x + 2y)
b) x3 - 4x2 + 12x - 27 = (x3 - 3x2) - (x2 - 3x) + (9x - 27) = x2(x - 3) - x(x - 3) + 9(x - 3) = (x2 - x + 9)(x - 3)
d) x4 - 2x3 + 2x - 1 = (x4 - 2x3 + x2) - (x2 - 2x + 1) = (x2 - x)2 - (x - 1)2 = (x2 - x - x + 1)(x2 - x + x - 1)
= (x2 - 2x + 1)(x2 - 1) = (x - 1)2(x - 1)(x + 1) = (x - 1)3(x + 1)
e) x4 + 2x3 - 4x - 4 = (x4 + 2x4 + x2) - (x2 + 4x + 4) = (x2 + x)2 - (x + 2)2 = (x2 + x - x - 2)(x2 + x + x + 2) = (x2 - 2)(x2 + 2x + 2)