Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ktra lại đề
b) \(5x\left(x-y\right)-\left(y-x\right)=\left(x-y\right)\left(5x+1\right)\)
c) \(x\left(x+3\right)+\left(3+x\right)=\left(x+3\right)\left(x+1\right)\)
f) \(4x\left(x-2\right)-\left(2x\right)^2=4x^2-8x-4x^2=-8x\)
g) \(\left(x-2\right)^2-\left(2-x\right)^3=\left(x-2\right)^2+\left(x-2\right)^3=\left(x-2\right)^2\left(x-1\right)\)
a) x2( x - 1 ) - x + 1
= x2( x - 1 ) - ( x - 1 )
= ( x - 1 )( x2 - 1 )
= ( x - 1 )( x - 1 )( x + 1 )
= ( x - 1 )2( x + 1 )
b) ( a + b )3 - ( a - b )3
= ( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3
= 6a2b + 2b3
= 2b( 3a2 + b )
c) 6x( x - 3 ) + 9 - 3x2
= 6x2 - 18x + 9 - 3x2
= 3x2 - 18x + 9
= 3( x2 - 6x + 3 )
d) x( x - y ) - 5x + 5y
= x( x - y ) - ( 5x - 5y )
= x( x - y ) - 5( x - y )
= ( x - y )( x - 5 )
e) 3( x + 4 ) - x2 - 4x
= 3( x + 4 ) - ( x2 + 4x )
= 3( x + 4 ) - x( x + 4 )
= ( x + 4 )( 3 - x )
f) x2 + 4x - y2 + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
g) x2 + 5x
= x( x + 5 )
h) -x2 + 2x + 2y + y2
= ( y2 - x2 ) + ( 2x + 2y )
= ( y - x )( y + x ) + 2( x + y )
= ( x + y )( y - x + 2 )
a) \(a^2x+a^2y-9x-9y\)
\(=\left(a^2x+a^2y\right)-\left(9x+9y\right)\)
\(=a^2\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(a^2-9\right)\)
\(=\left(x+y\right)\left(a-3\right)\left(a+3\right)\)
b) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
c) \(x^2\left(x-3\right)+12-4x\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
d) \(4x\left(x-y\right)+6y\left(x-y\right)\)
\(=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
e) \(5\left(x+y\right)-xy-y^2\)
\(=5\left(x+y\right)-\left(xy+y^2\right)\)
\(=5\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(5-y\right)\)
a) \(=\left(x-2y\right)\left(x^2+5x\right)\)
b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)
c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(3-x+3\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)
f) \(=2x\left(x-y\right)-16\left(x-y\right)\)
\(=2\left(x-y\right)\left(x-8\right)\)
a) \(x^2-y^2-5x-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
b) \(5x^3-5x^2y-10x^2+10xy\)
\(=\left(5x^3-5x^2y\right)-\left(10x^2-10xy\right)\)
\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x^2-10x\right)\)
\(=5x\left(x-y\right)\left(x-2\right)\)
c) \(x^3-2x^2-x+2\)
\(=\left(x^3-2x^2\right)-\left(x-2\right)\)
\(=x^2\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(-y^2+2xy-x^2+3x-3y\)
\(=-\left(y^2-2xy+x^2\right)+\left(3x-3y\right)\)
\(=-\left(y-x\right)^2+3\left(x-y\right)\)
\(=-\left(x-y\right)^2+3\left(x-y\right)\)
\(=\left(x-y\right)\left[-\left(x-y\right)+3\right]\)
\(=\left(x-y\right)\left(-x+y+3\right)\)
g) \(4x^2-8x+3\)
\(=4x^2-6x-2x+3\)
\(=\left(4x^2-6x\right)-\left(2x-3\right)\)
\(=2x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-3\right)\left(2x-1\right)\)
h) \(2x^2-5x-7\)
\(=2x^2+2x-7x-7\)
\(=\left(2x^2+2x\right)-\left(7x+7\right)\)
\(=2x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left(2x-7\right)\)
k) \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
a)
\(12xy-4x^2y+8xy^2\\ =4xy\cdot\left(3-x+2y\right)\)
b)
\(4x\cdot\left(x-2y\right)-8y\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)\cdot\left(x-2y\right)\\ =4\cdot\left(x-2y\right)^2\)
c)
\(25x^2\cdot\left(y-1\right)-5x^3\cdot\left(1-y\right)\\ =-25x^2\cdot\left(1-y\right)-5x^3\cdot\left(1-y\right)\\ =\left(1-y\right)\cdot\left(-25x^2-5x^3\right)\\ =5x^2\left(1-y\right)\cdot\left(-5-x\right)\)
d)
\(3x\cdot\left(a-x\right)+4a\cdot\left(a-x\right)\\ =\left(a-x\right)\cdot\left(3x+4a\right)\)
e)
\(x^3-3x^2+2\\ =x^3-x^2-2x^2+2\\ =x^2\cdot\left(x-1\right)-2\left(x^2-1\right)\\ =x^2\cdot\left(x-1\right)-2\cdot\left(x-1\right)\cdot\left(x+1\right)\\ =\left(x-1\right)\left[x^2-2\cdot\left(x+1\right)\right]\\ =\left(x-1\right)\cdot-\left(x^2+2x+1\right)\\ =\left(x-1\right)\cdot-\left(x+1\right)^2\)
\(1.\)
\(a.\)
\(x^2-2x=x\left(x-2\right)\)
b.
\(3y^3+6xy^2+3x^2y\)
\(=3y\left(y^2+2xy+x^2\right)\)
\(=3y\left(x+y\right)^2\)
\(c.\)
\(x^2-2xy-xy+2y^2\)
\(=x\left(x-2y\right)-y\left(x-2y\right)\)
\(=\left(x-y\right)\left(x-2y\right)\)
\(2.\)
\(a.\)
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(b.\)
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(c.\)
\(x^2-6xy+9y^2-16\)
\(=\left(x^2-6xy+9y^2\right)-4^2\)
\(=\left(x-3\right)^2-4^2\)
\(=\left(x-3-4\right)\left(x-3+4\right)\)
\(=\left(x-7\right)\left(x+1\right)\)
Tương tự câu \(d,e,g\)
\(3.\)
\(a.\)
\(x^3-2x=0\)
\(\Rightarrow x\left(x^2-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{2}\end{matrix}\right.\)
\(b.\)
\(x\left(x-4\right)+\left(x-4\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
\(c.\)
\(x\left(x-3\right)+4x-12=0\)
\(\Rightarrow x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Tương tự \(d,e,g\)