\(\sqrt{33}+\sqrt{22}\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

\(a.\sqrt{33}+\sqrt{22}=\sqrt{11}.\sqrt{3}+\sqrt{11}.\sqrt{2}=\sqrt{11}\left(\sqrt{3}+\sqrt{2}\right)\)

\(b.4-4\sqrt{5}=4\left(1-\sqrt{5}\right)\)

\(c.\left(\sqrt{2}+1\right)^2=\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)\)

\(d.10+2\sqrt{10}=\sqrt{10}.\sqrt{10}+2\sqrt{10}=\sqrt{10}\left(\sqrt{10}+2\right)\)

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

Bài 1: Tìm x để căn thức sau có nghĩaa)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)Bài 2: Tínha) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)Bài 3: Rút gọna)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c)...
Đọc tiếp

Bài 1: Tìm x để căn thức sau có nghĩa

a)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)

Bài 2: Tính

a) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)

Bài 3: Rút gọn

a)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c) 2\(\sqrt{7}\)+\(\sqrt{\left(2-\sqrt{7}\right)^2}\) d) 3\(\sqrt{\left(x-5\right)^2}\) với x < 5

e)\(\sqrt{\frac{9+4\sqrt{5}}{\left(\sqrt{5+2}\right)^2}}\)     f)\(\sqrt{\frac{\sqrt{9-4\sqrt{5}}-\sqrt{5}}{2}}\)+ 5

Bài 4: Tìm x biết:

a)\(\sqrt{4x^2}\)= 8     b) \(\sqrt{1+4x+4x^2}\)\(=\)\(7\)    c)\(\sqrt{x^4}\)\(=\)\(3\)

Bài 5: Phân tích đa thức thành nhân tử

a) x2 -2      b) x2\(-\)2\(\sqrt{3}\)\(\times\)x \(+\)3

Bài 6: Chứng minh a\(\in\)z , b\(\in\)z

A=\(\sqrt{A-2\sqrt{5}}\)\(-\)\(\sqrt{6+2\sqrt{5}}\)   B=\(\frac{\sqrt{3-2\sqrt{2}}}{17-12\sqrt{2}}\)\(-\)\(\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

1
5 tháng 8 2017

giúp mik vs thứ 2 mik nộp rr huhu

15 tháng 7 2017

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)

b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)

d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)

15 tháng 7 2018

\(1a.\left(\sqrt{72}-3\sqrt{5}+2\sqrt{8}\right).\sqrt{2}+\sqrt{90}=\sqrt{144}-3\sqrt{10}+2.\sqrt{16}+3\sqrt{10}=12+8=20\) \(b.\left(\sqrt{\dfrac{1}{5}}-10\sqrt{\dfrac{27}{5}}+2\sqrt{5}\right):\sqrt{5}+6\sqrt{3}=\left(\sqrt{\dfrac{1}{5}}-30\sqrt{\dfrac{3}{5}}+2\sqrt{5}\right).\dfrac{1}{\sqrt{5}}+6\sqrt{3}=\dfrac{1}{5}-6\sqrt{3}+2+6\sqrt{3}=\dfrac{11}{5}\) \(2.\sqrt{\left(3-\sqrt{10}\right)^2}=\sqrt{10}-3\)

\(b.\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}=2+\sqrt{3}+2-\sqrt{3}=4\) \(c.\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}=\sqrt{2}\)

12 tháng 10 2019

G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)

F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)

H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)

27 tháng 7 2020

a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)

b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)

\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)

d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)

Bài 1: Rút gọn

a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)

\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}\)

\(=2-\sqrt{2}-\sqrt{6}\)

b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)

\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{5}\)

c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-\sqrt{392}+7+\sqrt{392}\)

=21

d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)

\(=16\sqrt{5}\)