Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x 3 + y 3 + z 3 – 3xyz = x + y 3 – 3xy(x + y) + z 3 – 3xyz
= [ x + y 3 + z 3 ] - [ 3xy.(x+ y) + 3xyz]
= [ x + y 3 + z 3 ] – 3xy(x + y + z)
= (x + y + z)[ x + y 2 – (x + y)z + z 2 ] – 3xy(x + y + z)
= (x + y + z)( x 2 + 2xy + y 2 – xz – yz + z 2 – 3xy)
= (x + y + z)( x 2 + y 2 + z 2 – xy – xz - yz)
\(a,=\left(2x-5\right)\left(x+1\right)\\ b,=\left(x-10\right)\left(x+1\right)\\ c,=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(x^3-y^3+2x^2+2xy\)
\(=x\left(x^2-y^2+2x+2y\right)\)
\(=\)\(x\left[\left(x+y\right)\left(x-y\right)+2\left(x+y\right)\right]\)
\(=x\left(x+y\right)\left(x-y+2\right)\)
a) 16(12 t 2 +1).
b) Gợi ý x 3 + y 3 = ( x + y ) 3 - 3xy(x + y)
(x + y - z)( x 2 + y 2 + z 2 - xy + xz + yz).
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
=(x+y+z)(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)
=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)
b: a+b+c<>0
A=(a+b+c)^3-a^3-b^3-c^3/a+b+c
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)/(a+b+c)
=a^2+b^2+c^2-ab-ac-bc
=1/2[a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2]
=1/2[(a-b)^2+(b-c)^2+(a-c)^2]>=0
a) 12x. b) 4xy
c) 2y(3 x 2 + y 2 ).
d) (x + y + z)( x 2 + y 2 + z 2 – xy – xz - yz).
x + y + z 3 - z 3 - y 3 - z 3 = ( x + y ) + z 3 – x 3 – y 3 – z 3 = ( x + y ) 3 + 3 ( x + y ) 2 z + 3 ( x + y ) z 2 + z 3 – x 3 – y 3 – z 3 = x 3 + y 3 + 3 x y ( x + y ) + 3 ( x + y ) 2 z + 3 ( x + y ) z 2 – x 3 – y 3 ( v ì z 3 – z 3 = 0 ; 3 x 2 y + 3 x y 2 = 3 x y ( x + y ) ) = 3 x y . ( x + y ) + 3 ( x + y ) 2 . z + 3 ( x + y ) . z 2 = 3 ( x + y ) [ x y + ( x + y ) z + z 2 ] = 3 ( x + y ) [ x y + x z + y z + z 2 ] = 3 ( x + y ) [ x ( y + z ) + z ( y + z ) ] = 3 ( x + y ) ( y + z ) ( x + z )
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2-3xyz\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\)