Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(x^2+5x+5=t\)
Khi đó: \(A=\left(t-1\right)\left(t+1\right)-8\)
\(=t^2-9=\left(t-3\right)\left(t+3\right)\)
\(=\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)
Chúc bạn học tốt.
A=\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)
A=\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-8\)
A=\(\left(x^2+5x +4\right)\left(x^2+5x+6\right)-8\)
Đặt \(x^2+5x+4=x\)ta có:
x(x+2)-8=\(x^2+2x-8\)=\(\left(x+1\right)^2-9\)=(x+1-3)(x+1+3)=(x-2)(x+4)=\(\left(x^2+5x+4-2\right)\left(x^2+5x+4+4\right)\)=\(\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)
(x+1)(x+2)(x+3)(x+4)-8
=[(x+1).(x+4)].[(x+2).(x+3)]-8
=(x2+5x+4).(x2+5x+6)-8
Đặt (x2+5x+4)=t =>(x2+5x+6)=t+2
Thay vào biểu thức ta có:
(x2+5x+4).(x2+5x+6)-8
t.(t+2)-8
=t2+2t+1-9
=(t+1)2-32
=(x2+5x+4+1)-32
=(x2+5x+5+3).(x2+5x+5-3)
=(x2+5x+8).(x2+5x+2)
=
ta làm như sau :
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-8.\)
\(\Rightarrow\left(x^2+5X+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(x^2+5x+4=t\)
\(\Leftrightarrow t\left(t+2\right)-8\)
\(\Leftrightarrow t^2+2t-8\Leftrightarrow t^2+2t+1-9\)
\(\Leftrightarrow\left(t+1\right)^2-3^2\)
\(\Leftrightarrow\left(t-2\right)\left(t+4\right)\)
\(\Leftrightarrow\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)
(x+2)(x+3)(x+4)(x+5) - 8
=(x+2)(x+5)(x+3)(x+4)-8
=(x2+7x+10)(x2+7x+12)-8
đặt t=x2+7x+10 ta được:
t(t+2)-8=t2+2t-8
=t2-2t+4t-8
=t(t-2)+4(t-2)
=(t-2)(t+4)
thay t=x2+7x+10 ta được:
(x2+7x+8)(x2+7x+14)
vậy (x+2)(x+3)(x+4)(x+5) - 8=(x2+7x+8)(x2+7x+14)
=[(x+1)(x+4)][(x+2)(x+3)]+8=(x2+5x+4)(x2+5x+6)+8
Đặt x2+5x+4=t
Ta có : t(t+2)+8=t2+2t-8=(t-2)(t+4)
k mk nha