Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)
\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)
b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)
\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)
\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)
Để E giúp Anh giảm bớt gánh nặng nợ
\(4\left(x+1\right)\left(y+1\right)\left(x+y+1\right)-3\left(xy\right)^2\)
\(4\left(x+y+xy+1\right)\left(x+y+1\right)-3\left(xy\right)^2\)
\(4t\left(t+z\right)-3\left(xy\right)^2=4t^2+4tz+z^2-4z^2=\left(2t+z\right)^2-4z^2\)
\(\left(2t-z\right)\left(2t+3z\right)\)
Trả lại tên cho Em
\(\left[2\left(x+y+1\right)-xy\right]\left[2\left(x+y+1\right)+3xy\right]\)
Tính làm câu này để trả nợ câu kia mà thấy dài quá nên thôi :)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)
\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)
\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)
\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)
\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
#)Giải :
a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)
\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Bài 1:
\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)
\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)
\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)
\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)
Bài 2:
\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm)
Ta có:
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)
\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)
\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)
\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)=\left(c-a\right)\left(c-b\right)\left(b-a\right)\)
(a+1)(a+7)(a+3)(a+5)+15
=(a^2+8a+7)(a^2+8a+15)+15
=(a^2+8a+11-4)(a^2+8a+11+4)+15
=(a^2+8a+11)^2 -4^2+15
=(a^2+8a+11)^2 -1
=(a^2+8a+11-1)(a^2+8a+11+1)
=(a^2+8a+10)(a^2+8a+12)
(a+1)(a+7)(a+3)(a+5)+15
=(a^2+8a+7)(a^2+8a+15)+15
=(a^2+8a+11-4)(a^2+8a+11+4)+15
=(a^2+8a+11)^2 -4^2+15
=(a^2+8a+11)^2 -1
=(a^2+8a+11-1)(a^2+8a+11+1)
=(a^2+8a+10)(a^2+8a+12)