Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)=\sqrt{a}\left(\sqrt{b-1}\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right).\left(\sqrt{b}-1\right).\)
mầy phần này dễ mà mình gại đánh máy quá
những phần sau sử dụng hằng đẳng thức nhé
a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)
b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)
c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)
d, \(x-y-\sqrt{x}-\sqrt{y}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)
d) Tương tự.
a,b) Không hiểu
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)
\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)
a, \(7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}=7\sqrt{B}\left(\sqrt{A}+\sqrt{B}\right)-\left(\sqrt{A}+\sqrt{B}\right)\)\(=\left(\sqrt{A}+\sqrt{B}\right)\left(7\sqrt{B}-1\right)\)
b, \(a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)
c,\(\sqrt{x^2-25y^2}-\sqrt{x-5y}=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)
\(a,7\sqrt{AB}+7B-\sqrt{A}-\sqrt{B}\)( Với A>= 0, B>=0)
\(=\left(7\sqrt{AB}-\sqrt{A}\right)+\left(7B-\sqrt{B}\right)\)
\(=7\sqrt{A}\left(\sqrt{B}-1\right)+7\sqrt{B}\left(\sqrt{B}-1\right)\)
\(=\left(\sqrt{B}-1\right)\left(7\sqrt{A}+7\sqrt{B}\right)\)
\(=7\left(\sqrt{B}-1\right)\left(\sqrt{A}+\sqrt{B}\right)\)
\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)Với a>= 0, b>=0)
\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)\)
\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)
\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}.\sqrt{x+5y}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x+5y}-1\right)\)
a ) \(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)
b ) \(x-4\sqrt{x}+3=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2-1=\left(\sqrt{x}-2\right)^2-1\)
\(=\left(\sqrt{x}-2\right)^2-1^2=\left(\sqrt{x}-2+1\right)\left(\sqrt{x}-2-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\)
\(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}.\left(\sqrt{x}+1\right)\)
\(x-4\sqrt{x}+3=\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2\right]-1^2=\left(\sqrt{x}-2\right)^2-1^2\)
\(=\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)
1) \(x-y\)
\(=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
2)\(1+x\sqrt{x}\)
\(=1^3+\left(\sqrt{x}\right)^3\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)
\(a,\)\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\)
\(=7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)
\(b,a\sqrt{b}-b\sqrt{a}+\sqrt{a}-\sqrt{b}\)
\(=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)+\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}-1\right)\)
\(c,\sqrt{x^2-25y^2}-\sqrt{x-5y}\)
\(=\sqrt{\left(x-5y\right)\left(x+5y\right)}-\sqrt{x-5y}\)
\(=\sqrt{x-5y}\left(\sqrt{x-5y}-1\right)\)
Mình làm một vài câu thôi nhé, các câu còn lại tương tự.
Giải:
a) ??? Đề thiếu
b) \(\sqrt{-3x+4}=12\)
\(\Leftrightarrow-3x+4=144\)
\(\Leftrightarrow-3x=140\)
\(\Leftrightarrow x=\dfrac{-140}{3}\)
Vậy ...
c), d), g), h), i), p), q), v), a') Tương tự b)
w), x) Mình đã làm ở đây:
Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến
z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)
\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow4\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
- Câu a có chút thiếu sót, mong thông cảm :)
\(\sqrt{3x-1}\) = 4
a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x-4\sqrt{x-2}-2+4\)
\(=\left(x-2\right)-4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}-2\right)^2\)
b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x+4\sqrt{x-2}+4-2\)
\(=\left(x-2\right)+4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}+2\right)^2\)