\(A=x^4+2004x^2+2003x+2004\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)

\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)

20 tháng 8 2019

t làm bên h rồi mà? Làm quá lâu rồi luôn ấy! Đáp án y chang bạn Kid:v

Câu hỏi của Trần Minh Hiển - Toán lớp 9 (không biết AD đã fix lỗi ko dán link h vào olm chưa, nếu chưa ib t gửi full link, nhớ kèm theo link câu hỏi này là ok.)

DD
27 tháng 5 2021

Bài 1: 

\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)

\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)

\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)

\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)

DD
27 tháng 5 2021

Bài 2: 

\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm) 

Ta có: 

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)

\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)

\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)

\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)

27 tháng 10 2022

a: \(=a^2b-ab^2+b^2c-bc^2+c^2a-ca^2\)

\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac+b^2-bc+c^2\right)\)

b: \(=b^2c+bc^2+ac^2-a^2c-a^2b-ab^2\)

\(=b^2\left(c-a\right)+b\left(c^2-a^2\right)+ac\left(c-a\right)\)

\(=\left(c-a\right)\left(b^2+ac+b\left(c+a\right)\right)\)

\(=\left(c-a\right)\left(b^2+ac+bc+ba\right)\)

\(=\left(c-a\right)\left(b+c\right)\left(b+a\right)\)

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

5 tháng 1 2018

b+c\(\ge\) \(2\sqrt{bc}\)

(a+2b)(a+2c) =\(a^2 +2ac+2ab+ 4bc= a^2+2a(b+c) +4bc\)

\(\ge\)\(a^2+4a.\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)

\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}=a+2\sqrt{bc}\)

tương tự: \(\sqrt{\left(b+2a\right)\left(b+2c\right)}=b+2\sqrt{ac}\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}=c+2\sqrt{ab}\)

\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2b\right)\left(c+2a\right)}\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=3\)

khi a=b=c ( a,b,c nguyên dương nên a+b+c>0)

=> \(3\sqrt{a}=\sqrt{3}=>\sqrt{a}=\sqrt{b}=\sqrt{c}=\dfrac{\sqrt{3}}{3}\)

Thay vào M=\(\dfrac{1}{3}\)

14 tháng 12 2019

có cả mấy bất đẳng thức đó hả

bn viết công thức tổng quát ra cho mk vs

mk thanks