Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a-5\sqrt{a}=\sqrt{a}\left(\sqrt{a}-5\right)\)
b)\(a-7=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c)\(a+4\sqrt{a}+4=\left(\sqrt{a}+2\right)^2\)
d)\(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12=\sqrt{x}\left(\sqrt{y}-4\right)+3\left(\sqrt{y}-4\right)=\left(\sqrt{x}+3\right)\left(\sqrt{y}-4\right)\)
Lời giải:
a.
\(5+\sqrt{3}+5\sqrt{3}+3=(5+5\sqrt{3})+(\sqrt{3}+3)\)
\(=5(1+\sqrt{3})+\sqrt{3}(1+\sqrt{3})=(1+\sqrt{3})(5+\sqrt{3})\)
b.
\(\sqrt{x}+\sqrt{y}+\sqrt{xy}+1=(\sqrt{x}+\sqrt{xy})+(\sqrt{y}+1)\)
\(=\sqrt{x}(1+\sqrt{y})+(\sqrt{y}+1)=(\sqrt{y}+1)(\sqrt{x}+1)\)
c.
$x-4\sqrt{x}+3=(x-\sqrt{x})-(3\sqrt{x}-3)$
$=\sqrt{x}(\sqrt{x}-1)-3(\sqrt{x}-1)$
$=(\sqrt{x}-1)(\sqrt{x}-3)$
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
a) Ta có: \(-7xy\cdot\sqrt{\dfrac{3}{xy}}\)
\(=\dfrac{-7xy\cdot\sqrt{3xy}}{xy}\)
\(=-7\sqrt{3}\cdot\sqrt{xy}\)
b) Ta có: \(ab+b\sqrt{a}+\sqrt{a}+1\)
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
$a)-7xy.\sqrt{\dfrac{3}{xy}}$
$=-7.\sqrt{x^2y^2.\dfrac{3}{xy}}(do \,x,y>0a\to xy>0)$
$=-7.\sqrt{\dfrac{xy}{3}}$
$b)ab+b\sqrt{a}+\sqrt{a}+1(a \ge 0)$
$=b\sqrt{a}(\sqrt{a}+1)+\sqrt{a}+1$
$=(\sqrt{a}+1)(b\sqrt{a}+1)$
a) \(-7xy.\sqrt{\dfrac{3}{xy}}=-7xy.\dfrac{\sqrt{3xy}}{xy}=-7\sqrt{3xy}\)
b) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
a: \(-7xy\cdot\sqrt{\dfrac{3}{xy}}=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3xy}\)
b: \(ab+b\sqrt{a}+\sqrt{a}+1\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
a) xy - y√x + √x - 1
= (√x)2.y - y√x + √x - 1
= y√x(√x - 1) + √x - 1
= (√x - 1)(y√x + 1) với x ≥ 1
= √x(√a + √b) - √y(√a + √b)
= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)
(với a + b, a - b đều không âm)
d) 12 - √x - x
= 16 - x - 4 - √x (tách 12 = 16 - 4 và đổi vị trí)
= [42 - (√x)2] - (4 + √x)
= (4 - √x)(4 + √x) - (4 + √x)
= (4 + √x)(4 - √x - 1)
= (4 + √x)(3 - √x)
a) \(a-5\sqrt{a}\)
\(=\sqrt{a}\left(\sqrt{a}-\sqrt{5}\right)\)
b) \(a-7\)
\(=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c) \(a+4\sqrt{a}+4\)
\(=\left(\sqrt{a}+2\right)^2\)
d) \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
\(=\sqrt{x}\left(\sqrt{y}-4\right)+3\left(\sqrt{y}-4\right)\)
\(=\left(\sqrt{x}+3\right)\left(\sqrt{y}-4\right)\)
a: \(a-5\sqrt{a}=\sqrt{a}\left(\sqrt{a}-5\right)\)
b: \(a-7=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c: \(a+4\sqrt{a}+4=\left(\sqrt{a}+2\right)^2\)
d: \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
=căn x(căn y-4)+3(căn y-4)
=(căn y-4)(căn x+3)