Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
\(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}.x+\sqrt{3}^2=\left(x+\sqrt{3}\right)^2\)
\(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\sqrt{5}^2=\left(x-\sqrt{5}\right)^2\)
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
a) \(a-5\sqrt{a}\)
\(=\sqrt{a}\left(\sqrt{a}-\sqrt{5}\right)\)
b) \(a-7\)
\(=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c) \(a+4\sqrt{a}+4\)
\(=\left(\sqrt{a}+2\right)^2\)
d) \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
\(=\sqrt{x}\left(\sqrt{y}-4\right)+3\left(\sqrt{y}-4\right)\)
\(=\left(\sqrt{x}+3\right)\left(\sqrt{y}-4\right)\)
a: \(a-5\sqrt{a}=\sqrt{a}\left(\sqrt{a}-5\right)\)
b: \(a-7=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c: \(a+4\sqrt{a}+4=\left(\sqrt{a}+2\right)^2\)
d: \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
=căn x(căn y-4)+3(căn y-4)
=(căn y-4)(căn x+3)
2x2 + 2y2 + b2 + 3xy - bx - by = 0
<=> 4x2 + 4y2 + 2b2 + 6xy - 2bx - 2by = 0
<=> (x2 - 2bx + b2) + (y2 - 2by + y2) + (3x2 + 6xy + 3y2) = 0
<=> (x - b)2 + (y - b)2 + 3(x + y)2 = 0
Ta thấy VT > 0 nên không có nghiệm.
PS: Không phải phân tích nhân tử mà là giải phương trình nhé.
a) \(3x-1=\left(\sqrt{3x}\right)^2-1^2=\left(\sqrt{3x}-1\right)\left(\sqrt{3x}+1\right)\)
b) \(4x-25=\left(2\sqrt{x}\right)^2-5^2=\left(2\sqrt{x}-5\right)\left(2\sqrt{x}+5\right)\)
c) \(x-3\sqrt{x}-4\left(x\ge0\right)\Rightarrow x+\sqrt{x}-4\sqrt{x}-4\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)\)
\(a,2x-2\sqrt{x}=2\sqrt{x}\left(\sqrt{x}-1\right)\\ b,x-\sqrt{x}-6=x-3\sqrt{x}+2\sqrt{x}-6\\ =\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\\ c,4x-4\sqrt{x}+1=\left(2\sqrt{x}\right)^2-2.2\sqrt{x}.1+1^2=\left(2\sqrt{x}+1\right)^2\)
a) \(2x-2\sqrt{x}=2\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
c) \(4x-4\sqrt{x}+1=\left(2\sqrt{x}-1\right)^2\)