K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

3+2x = 2(1,5+x)?

\(2x+3=2\left(x+\dfrac{3}{2}\right)\)

Này nhóm kiểu gì nữa em

Em xem lại đề nhe!

\(3+2x=2\left(x+\dfrac{3}{2}\right)\)

7 tháng 12 2023

\(x\sqrt{x}+2x+\sqrt{x}+2\left(x>0\right)\)

\(=\left(x\sqrt{x}+\sqrt{x}\right)+\left(2x+2\right)\)

\(=\sqrt{x}\left(x+1\right)+2\left(x+1\right)\)

\(=\left(\sqrt{x}+2\right)\left(x+1\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)

\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)

\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)

27 tháng 7 2021

\(a,2x-2\sqrt{x}=2\sqrt{x}\left(\sqrt{x}-1\right)\\ b,x-\sqrt{x}-6=x-3\sqrt{x}+2\sqrt{x}-6\\ =\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\\ c,4x-4\sqrt{x}+1=\left(2\sqrt{x}\right)^2-2.2\sqrt{x}.1+1^2=\left(2\sqrt{x}+1\right)^2\)

a) \(2x-2\sqrt{x}=2\sqrt{x}\left(\sqrt{x}-1\right)\)

b) \(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)

c) \(4x-4\sqrt{x}+1=\left(2\sqrt{x}-1\right)^2\)

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)