Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,a^6+a^4+a^2b^2+b^4-b^6=\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)^3+\left(a+b\right)^2\)
bạn tự làm ra lun vs lại câu c/ cũng khá dễ đấy ngày mai nhớ k nha\(a,3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)=3\left(x^2+x+1\right)^2-\left(x^2+x+1\right)^2=\left(x^2+x+1\right)^2\left(3-1\right)=\left(x^4+x^2+1\right)4\)
a/ \(E=a^6+a^4+a^2b^2+b^4-b^6\)
\(E=\left[\left(a^2\right)^2+2a^2b^2+\left(b^2\right)^2\right]+\left(a^6-b^6\right)-a^2b^2\)
\(E=\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]+\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left[1+\left(a-b\right)\left(a+b\right)\right]\)
\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(1+a^2-b^2\right)\)
\(a^6+a^4+a^2b^2+b^4-b^6\)
\(a^2\left(a^4+a^2b^2+b^4\right)-b^2\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)
\(=\left(a^2+b^2+ab\right)\left(a^2+b^2-ab\right)\left(a^2-b^2+1\right)\)
Bài làm:
a) \(x^6-6x^4+12x^2-8\)
\(=\left(x^2-2\right)^3\)
b) \(x^2+16-8x=\left(x-4\right)^2\)
c) \(10x-x^2-25=-\left(x-5\right)^2\)
d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)
\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)
\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)
e) \(\left(x+y\right)^2-2xy+1\)
\(=x^2+2xy+y^2-2xy+1\)
\(=x^2+y^2+1\)
sai sai
a. \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)
b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)
c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)
d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)
\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)
1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)
Bạn tự lm tiếp.AD HĐT số (7)
2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)
AD HĐT số (7).Tự lm tiếp
3)\(x^6+1=\left(x^2\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
4)\(x^9+1=\left(x^3\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)
AD HĐT số (3).Tự lm tiếp
6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
AD HĐT số (4)
7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)
AD HĐT số (5)
8)\(27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
AD HĐT số (5)
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)
a)x(x2+2xy+y2-4)
=x[(x+y)2-22 ]
=x(x+y-2)(x+y+2)
b)x4+4=x4+4x2+4-4x2=(x2+2)2-4x2
=(x2+2-2x)(x2+2+2x)
\(x^3+2x^2y+xy^2-4x=x\)\(\left(x^2+2xy+y^2-4\right)\)
\(=x\left[\left(x+y\right)^2-4\right]\)
\(=x\left(x+y+2\right)\left(x+y-2\right)\)
\(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)
b) x^8+x^4+1
=x^8-x^2+x^4-x+x^2+x+1
=x^2(x^6-1)+x(x^3-1)+(x^2+x+1)
=x^2[(x^3)^2-1]+x(x^3-1)+(x^2+x+1)
=x^2(x^3-1)(x^3+1)+x(x^3-1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)(x^3+1)+x(x^3-1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)(x^3+1)+x(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)[x^2(x-1)(x^3+1)+x(x-1)+1]
=(x^2+x+1)(x^6+x^3-x^5-x+1)
dung thi tick cho minh nha minh thu may tinh roi
\(a^6+a^4+a^2b^2+b^4-b^6\)
\(=a^6-b^6+a^4+2a^2b^2+b^4-a^2b^2\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)+\left(a^2+b^2\right)^2-\left(ab\right)^2\)
\(=\left(a^2+b^2+ab\right)\left(a^2+b^2-ab\right)\left(a^2-b^2+1\right)\)
a⁶ + a⁴ + a²b² + b⁴ - b⁶
= (a⁶ - b⁶) + (a⁴ + a²b² + b⁴)
= [(a²)³ - (b²)³] + (a⁴ + a²b² + b⁴)
= (a² - b²)(a⁴ + a²b² + b⁴) + (a⁴ + a²b² + b⁴)
= (a - b)(a + b)(a⁴ + a²b² + b⁴) + (a⁴ + a²b² + b⁴)
= (a⁴ + a²b² + b⁴)[(a - b)(a + b) + 1]