K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2015

<=>x9-9x6-27

<=>(x3)3-3(x3)23+3.9.x3-27-27x3

<=>(x3-3)3-27x3

<=>(x3-3-3x).((x3-3)2+(x3-3).3x+9x2)

<=>(x3-3-3x).(x6-6x3+9+3x4-9x+9x2)

14 tháng 8 2015

\(\left(x^2+4x+7\right)\left(x^2+5x+8\right)\)

14 tháng 8 2015

Dạng đầy đủ: \(x^4+ax^3+bx^2+cx+d\)

Nhân 4 vô: \(=4x^4+4ax^3+4bx^2+4cx+4d=\left(2x^2+ax\right)^2+\left[\left(4b-a^2\right)x^2+4cx+4d\right]\)

\(=\left[\left(2x^2+ax\right)^2+2.m.\left(2x^2+ax\right)+m^2\right]+\left[\left(4b-a^2-4m\right)x^2+\left(4c-2ma\right)x+4d-m^2\right]=0\)

(m là 1 hằng số đang đi tìm)

\(=\left(2x^2+ax+m\right)^2+\left[\left(4b-a^2-4m\right)x^2+2\left(4c-m\right)x+4d-m^2\right]\)

Lại phân tích \(\left(4b-a^2-4m\right)x^2+2\left(4c-m\right)x+4d-m^2=...\left(x+...\right)^2\)

Cần: \(\Delta'=\left(4c-m\right)^2-\left(4b-a^2-4m\right)\left(4d-m^2\right)=0\)

Đây là pt bậc 3 ẩn m, tìm m đẹp và \(4b-a^2-4m<\)\(0\) là đa thức đã cho phân tích được thành hiệu 2 bình phương -> hằng đẳng thức số 3.

31 tháng 7 2018

b, <=>(4x)3+13 

<=> (4x+1)( 16x2-4x+1)

c, <=> (x.y2.z3)3-53

<=> (xy2z3-5)( x2y4z6+5xy2z3+25)

d, <=> (3x2)3-(2x)3

<=> (3x2-2x)(9x4+6x3+4x2)

d, (x3)2- (y3)2 

= (x3+y3)(x3-y3)

12 tháng 2 2016

moi hok lop 6 

12 tháng 2 2016

=x^4(x-2)+2x^2(x-2)-3(x-2)

=(x-2)(x^4+2x^2-3)

1 tháng 8 2017

\(\left(x-3\right).\left(x+3\right)\)\(+\left(x-3\right)\left(x+4\right)\)=\(\left(x-3\right)\left(x+3+x+4\right)=\left(x-3\right)\left(2x+7\right)\)

6 tháng 8 2020

Bài làm:

a) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)

b) \(4x^2-5=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)

c) \(3x^2-1=\left(x\sqrt{3}-1\right)\left(x\sqrt{3}+1\right)\)

d) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

e) \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

f) \(9x-4=\left(3\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)\)

22 tháng 7 2015

 

\(a,x-9+y-2\sqrt{xy}\left(x;y>0\right)\)

\(=\left(\sqrt{x}\right)^2-2\sqrt{x}\sqrt{y}+\left(\sqrt{y}\right)^2-9\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)

\(=\left(\sqrt{x}-\sqrt{y}+3\right)\left(\sqrt{x}-\sqrt{y}-3\right)\)

\(b,\text{ đkxđ }x\ge0\)

\(x-5\sqrt{x}+6=\left(\sqrt{x}\right)^2-2\sqrt{x}-3\sqrt{x}+6\)

\(=\sqrt{x}.\left(\sqrt{x}-2\right)-3.\left(\sqrt{x}-2\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)

\(c,đ\text{kxđ }x\ge0\)

\(x-2\sqrt{x}-3=\left(\sqrt{x}\right)^2+\sqrt{x}-3\sqrt{x}-3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)+3.\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)

\(d,\text{đkxđ }x\ge0\)

\(\sqrt{x}-x^2=\sqrt{x}-\left(\sqrt{x}\right)^4=\sqrt{x}\left(1-\left(\sqrt{x}\right)^3\right)\)

\(=\sqrt{x}.\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

21 tháng 8 2015

x3-x2-4=x3-2x2+x2-4=x2(x-2)+(x-2)(x+2)=(x-2)(x2+x+2)

10 tháng 6 2017

\(x^3-x^2-4\)

\(=x^3+x^2-2x^2-4\)

\(=\left(x^3-2x^2\right)+\left(x^2-4\right)\)

\(=x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)