Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{x}+2\sqrt{x}+2\)
= \(\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
= \(\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\)
\(2x-2\sqrt{x}+3\sqrt{x}-3\)
= \(2\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)\)
= \(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
\(\hept{\begin{cases}2x^2+2xy+2x+6=0\left(1\right)\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\left(2\right)\end{cases}}\)
\(\Rightarrow\left(1\right)-\left(2\right)\Leftrightarrow x^2+2-3y+2\sqrt{y\left(x^2+2\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}+\sqrt{y}\right)^2-4y=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}+\sqrt{y}-2\sqrt{y}\right)\left(\sqrt{x^2+2}+\sqrt{y}+2\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}-\sqrt{y}\right)\left(\sqrt{x^2+2}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+2}-\sqrt{y}=0\)
\(\Leftrightarrow y=x^2+2\)
Làm nốt
\(ĐK y⩾0\)
Hệ đã cho tương đương với
{2x2+2xy+2x+6=0(x+1)2+3(y+1)+2xy=2√y(x2+2){2x2+2xy+2x+6=0(x+1)2+3(y+1)+2xy=2y(x2+2)
Trừ từng vế 22 phương trình ta được
x2+2+2√y(x2+2)−3y=0x2+2+2y(x2+2)−3y=0
⇔(√x2+2−√y)(√x2+2+3√y)=0⇔(x2+2−y)(x2+2+3y)=0
⇔x2+2=y
a/ \(=x-1+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
b/ \(=x-1-2\sqrt{x-1}+1=\left(\sqrt{x-1}-1\right)^2\)
c/ \(=x-4-4\sqrt{x-4}+4=\left(\sqrt{x-4}-2\right)^2\)
d/ \(=\left(\sqrt{x}+2\right)^2\)
\(x^2\left(x+1\right)+xy\left(y+1\right)+2y^2\left(1-y\right)=0\)