Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+3\sqrt{x+2}-2\)
\(=x+2+3\sqrt{x+2}-4\)
\(=\left(\sqrt{x+2}\right)^2+4\sqrt{x+2}-\sqrt{x+2}-4\)
\(=\left(\sqrt{x+2}+4\right)\left(\sqrt{x+2}-1\right)\)
\(x+3\sqrt{x+2}-2=x+2+3\sqrt{x+2}-4\)
\(=x+2-\sqrt{x+2}+4\sqrt{x+2}-4\)
\(=\sqrt{x+2}\left(\sqrt{x+2}-1\right)+4\left(\sqrt{x+2}-1\right)\)
\(=\left(\sqrt{x+2}-1\right)\left(\sqrt{x+2}+4\right)\)
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)
\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
Đặt t=\(x^2+x\)
\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)
Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)
\(=a^2xy+b^2xy-abx^2-aby^2\)
\(=ay\left(ax-by\right)-bx\left(ax-by\right)\)
\(=\left(ax-by\right)\left(ay-bx\right)\)
xy(a2+b2)-ab(x2+y2)
= xya2+xyb2-abx2-aby2
=(xya2-aby2)-(abx2-xyb2)
=ay(xa-by)-xb(xa-by)
=(xa-by)(ay-xb)
`x^2-x-2001.2002`
`=x^2-2002x+2001x-2001.2002`
`=x(x-2002)+2001(x-2002)`
`=(x-2002)(x+2001)`.
x2 - x - 2001.2002
= (x2 - 2002x) + (2001x - 2001.2002)
= x(x - 2002) + 2001(x - 2002)
= (x + 2001)(x- 2002)
Lời giải:
$x-2\sqrt{x}-15=(x-5\sqrt{x})+(3\sqrt{x}-15)$
$=\sqrt{x}(\sqrt{x}-5)+3(\sqrt{x}-5)=(\sqrt{x}-5)(\sqrt{x}+3)$
a. x2 - 11 = \(x^2-\left(\sqrt{11}\right)^2=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)
b. x2 - 5 = \(x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
c. x2 - 7 = \(x^2-\left(\sqrt{7}\right)^2=\left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right)\)
Ta có: x 2 - 2 2 x + 2 = x 2 - 2 . x . 2 + 2 2 = x - 2 2