Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 - x + 1)2 - 5x(x2 - x + 1) + 4x2
Đặt x2 - x + 1 = a
<=> a2 - 5xa + 4x2 = x2 - 4xa - xa + 4x2
= a(a - 4x) - x(a - 4x) = (a - x)(a - 4x)
= (x2 - x + 1 - x)(x2 - x + 1 - 4x)
= (x2 - 2x + 1)(x2 - 5x + 1) = (x - 1)2(x2 - 5x + 1)
Đặt x2 - x + 1 = y
đthức <=> y2 - 5xy + 4x2
= y2 - xy - 4xy + 4x2
= y( y - x ) - 4x( y - x )
= ( y - x )( y - 4x )
= ( x2 - x + 1 - x )( x2 - x + 1 - 4x )
= ( x2 - 2x + 1 )( x2 - 5x + 1 )
= ( x - 1 )2( x2 - 5x + 1 )
\(-A=x^2-6x+9=\left(x-3\right)^2\Rightarrow A=-\left(x-3\right)^2=\left(3-x\right)\left(x-3\right)\)
\(B=\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)\)
\(A=6x-9-x^2\)
\(=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
\(B=\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=\left(4x+2\right).2x\)
1)
Tìm Max : Viết A dưới dạng : \(A=\frac{-\left(x^2-2x+1\right)+2x^2+4}{x^2+2}=-\frac{\left(x-1\right)^2}{x^2+2}+2\le2\)với mọi x
\(\Rightarrow MaxA=2\Leftrightarrow x=1\)
Tìm Min : Viết A dưới dạng : \(A=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+x^2+2}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\)với mọi x
\(\Rightarrow MinA=\frac{1}{2}\Leftrightarrow x=-2\)
2) Biểu diễn M dưới dạng :
\(M=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab=\left(a^2-2ab+b^2\right)+\left(a^3-3a^2b+3ab^2-b^3\right)=\left(a-b\right)^2+\left(a-b\right)^3\)
Thay a-b = 1 vào M được : \(M=2\)
3) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-24=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)Đặt \(t=x^2+5x+5\)thay vào biểu thức trên được \(\left(t-1\right)\left(t+1\right)-24=t^2-25=\left(t-5\right)\left(t+5\right)=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)
Vậy kết quả phân tích thành nhân tử là : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=x\left(x+5\right)\left(x^2+5x+10\right)\)
4)
a) \(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\Leftrightarrow1+2\left(ab+bc+ac\right)=1\Leftrightarrow ab+bc+ac=0\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\Rightarrow xy+yz+zx=k^2ab+k^2bc+k^2ac=k^2\left(ab+bc+ac\right)=0\)
Vậy xy + yz + zx = 0 (đpcm)
b) Theo bài ra ta có : \(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^2+b^2+c^2=1\left(2\right)\\a^3+b^3+c^3=1\left(3\right)\end{cases}}\)
Từ (1) và (3) suy ra được : \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)^3=0\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Do đó : \(a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Nếu \(a+b=0\Rightarrow c=1\Rightarrow a^2+b^2=0\)
Đến đây ta có hệ : \(\hept{\begin{cases}a+b=0\\a^2+b^2=0\\a^3+b^3=0\end{cases}\Leftrightarrow a=b=0}\)
Làm tương tự với \(b+c=0\)và \(c+a=0\)
Kết luận tập nghiệm : \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;0\right);\left(1;0;0\right)\)
Lời giải : Ta có x + y - 3 = xy(1 - 2xy)
<=> xy + 3 = x4 + y4 + 2x2y2
<=> xy + 3 = (x2 + y2)2 (1).
Do (x2 - y2)2 ≥ 0 với mọi x, y, dễ dàng suy ra (x2 + y2)2 ≥ 4(xy)2 với mọi x, y (2).
Từ (1) và (2) ta có :
xy + 3 ≥ 4(xy)2 <=> 4t2 - t - 3 ≤ 0 (với t = xy)
<=> (t - 1)(4t + 3) ≤ 0
Vậy : t = xy đạt GTLN bằng 1