K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

\(x^2-16+2\left(x+4\right)\)

\(=\left(x+4\right)\left(x-4\right)+2\left(x+4\right)\)

\(=\left(x+4\right)\left(x-4+2\right)\)

\(=\left(x+4\right)\left(x-2\right)\)

18 tháng 7 2019

\(x^2-16+2\left(x+4\right)=x^2+2x-8=x^2-2x+4x-8\)

\(=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\)

NV
19 tháng 8 2021

\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)

\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)

\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)

\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)

19 tháng 8 2021

\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)

Đặt t=\(x^2+x\)

\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)

Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)

2 tháng 10 2016

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

2 tháng 10 2016

giúp mình câu khác được ko? câu này mình biết làm òi

9 tháng 12 2017

Ta có:  \(P\left(x\right)=x^4+6x^3+7x^2-6x+1\)

                        \(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

                        \(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

                        \(=\left(x^2+3x-1\right)^2\)

20 tháng 11 2021

B

14 tháng 11 2017

a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)

         =x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)

        =(x^4-4x^3+5x^2-4x+4)(x-1)

       =[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)

       =(x^3-2x^2+x-2)(x-2)(x-1)

      =(x^2+1)(x-2)^2(x-1)

23 tháng 10 2019

\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)

Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:

\(\left(t-x\right)\left(t+x\right)-3x^2\)

\(=t^2-x^2-3x^2\)

\(=t^2-4x^2\)

\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:

\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)

\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)

24 tháng 1 2022

k làm đc k cần phải ghi zậy mô ha

NV
24 tháng 1 2022

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp