Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)
b)\(x\left(y+1\right)+\left(y+1\right)=\left(y+1\right)\left(x+1\right)\)
c)\(\left(x+y\right)^2-2\left(x+y\right)=\left(x+y\right)\left(x+y-2\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) 3x2 - 7x + 2
= 3x2 - 6x - x + 2
= (3x2 - 6x) - (x - 2)
= 3x (x - 2) - (x - 2)
= (3x - 1) (x - 2)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a)\(x^2+2x+1=\left(x+1\right)^2\)
b)\(1-2y+y^2=\left(1-y\right)^2\)
hơ hơ ~ dễ thế này cơ mà!
a.x2+2x+1=x2+2x+12=(x+1)2=(x+1)*(x+1)
b.1-2y+y2=12-2y+y2=(y-1)2=(y-1)*(y-1)
Lời giải:
a.
$2x^4-7x^3-2x^2+13x+6$
$=(2x^4-4x^3)-(3x^3-6x^2)-(8x^2-16x)-(3x-6)$
$=2x^3(x-2)-3x^2(x-2)-8x(x-2)-3(x-2)$
$=(x-2)(2x^3-3x^2-8x-3)$
$=(x-2)[2x^2(x-3)+3x(x-3)+(x-3)]$
$=(x-2)(x-3)(2x^2+3x+1)$
$=(x-2)(x-3)[2x(x+1)+(x+1)]$
$=(x-2)(x-3)(x+1)(2x+1)$
b.
$(x^2+1)-x(a^2+1)$
Đa thức này không phân tích được thành nhân tử bạn nhé.
a)\(2a^3+16=2\left(a^3+8\right)=2\left(a+2\right)\left(a^2-2a+4\right)\)
b)\(8x^3+27y^3+36x^2y+54xy^2=\left(2x\right)^3+\left(3y\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2\)
\(=\left(2x+3y\right)^2\)
c)\(x^4-2x^3-x^2+2x+1=\left(x^4-x^3-x^2\right)-\left(x^3-x^2-x\right)-\left(x^2-x-1\right)\)
\(=x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)-\left(x^2-x-1\right)\)
\(=\left(x^2-x-1\right)\left(x^2-x-1\right)=\left(x^2-x-1\right)^2\)
(2x + 1)2 - 16x2
= (2x + 1)2 - (4x)2
= (2x + 1 + 4x)(2x + 1 - 4x)
= (6x + 1)(1 - 2x)
= (2x +1)2 - (4x)2 = (2x + 1 - 4x).(2x + 1 + 4x) = (1 - 2x).(6x + 1)