\(\sqrt{x}\) - 3 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

\(2x-\sqrt{x}-3\)

\(\Leftrightarrow2x+2\sqrt{x}-3\sqrt{x}-3\)

\(\Leftrightarrow2\sqrt{x}.\left(\sqrt{x}+1\right)-3.\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)\)

21 tháng 7 2015

\(2x-\sqrt{x-3}\) như thế này hả

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)

\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)

\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)

28 tháng 7 2016

re nhung rai qua di

2 tháng 5 2017

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)

\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

29 tháng 9 2020

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=\left(\sqrt{x}\right)^2.y-y\sqrt{x}+\sqrt{x}-1\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1\)

\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

5 tháng 8 2016

Ta có : \(M=7\sqrt{x-1}-\sqrt{x^3-x^2}+x-1\)

\(=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+x-1\)

\(=7\sqrt{x-1}-x\sqrt{x-1}+\left(\sqrt{x-1}\right)^2\)

\(=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)

\(=\sqrt{x-1}\left(\sqrt{x-1}+2\right)\left(\sqrt{x-1}-3\right)\)

6 tháng 8 2016

CẢM ƠN BẠN

24 tháng 10 2018

\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)

\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)

\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)

19 tháng 7 2018

a ) \(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)

b ) \(x-4\sqrt{x}+3=\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2-1=\left(\sqrt{x}-2\right)^2-1\)

\(=\left(\sqrt{x}-2\right)^2-1^2=\left(\sqrt{x}-2+1\right)\left(\sqrt{x}-2-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)\)

19 tháng 7 2018

\(x+\sqrt{x}=\left(\sqrt{x}\right)^2+\sqrt{x}=\sqrt{x}.\left(\sqrt{x}+1\right)\)

\(x-4\sqrt{x}+3=\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2\right]-1^2=\left(\sqrt{x}-2\right)^2-1^2\)

\(=\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)\)

\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)

3 tháng 7 2017

1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)

2/ Bài này làm gì còn phân tích được nữa.