Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+5x^3-12x^2+5x+1\)
\(=x^4-x^3+6x^3-6x^2-6x^2+6x-x+1\)
\(=x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(=\left(x-1\right)\left(x^3-x^2+7x^2-7x+x-1\right)\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)+7x\left(x-1\right)+\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x^2+7x+1\right)\)
1. \(x\left(x^2-5xy-14y^2\right)=x\left(x^2-7xy+2xy-14y^2\right)\)
\(=x\left(x-2\right)\left(x-7\right)\)
2. \(x^4+2x^2+1-9x^2=\left(x^2+1\right)^2-\left(3x\right)^2=\left(x^2+1-3x\right)\left(x^2+1+3x\right)\)
3. \(4x^4+4x^2+1-16x^2=\left(2x^2+1\right)^2-\left(4x\right)^2=\left(2x^2-4x+1\right)\left(2x^2+4x+1\right)\)
4. \(x^2+x+7x+7=\left(x+7\right)\left(x+1\right)\)
5. \(x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left(x+2\right)\left(x-7\right)\)
Phân tích đa thức thành nhân tử :
1.x3-5x2y-14xy2
2.x4-7x2+1
3.4x4-12x2+1
4.x2+8x+7
5.x3-5x2-14x
Dễ mà:
f(x)=(2x4-2x3)-(3x3-3x2)-(8x2-8x)-(3x-3)
=2x3(x-1)-3x2(x-1)-8x(x-1)-3(x-1)
=(x-1)(2x3-3x2-8x-3)
=(x-1)[(2x3+2x2)-(5x2+5x)-(3x+3)]
=(x-1)[2x2(x+1)-5x(x+1)-3(x+1)]
=(x-1)(x+1)(2x2-5x-3)
=(x-1)(x+1)[2x(x-3)+(x-3)]
=(x-1)(x+1)(x-3)(2x+1)
\(f\left(x\right)=2x^4-5x^3-5x^2+5x+3.\)
\(=\left(2x^4-2x^3\right)-\left(3x^3-3x^2\right)-\left(8x^2-8x\right)-\left(3x-3\right)\text{ }\left(\text{Hơi khó hiểu thông cảm! }\right)\)
\(=2x^3\left(x-1\right)-3x^2\left(x-1\right)-8x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(2x^3-3x^2-8x-3\right)\)
\(=\left(x-1\right)\left[\left(2x^3+2x^2\right)-\left(5x^2+5x\right)-\left(3x+3\right)\right]\)
\(=\left(x-1\right)\left[2x^2\left(x+1\right)-5x\left(x+1\right)-3\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(2x^2-5x-3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[\left(2x^2-6x\right)+\left(x-3\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(2x+1\right)\)
\(f,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(t=x^2+5x+4\) , ta có
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t^2+2t+1\right)-25\)
\(=\left(t+1\right)^2-5^2\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(g,\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(t=x^2-8x+7\), ta có:
\(t\left(t+8\right)-20\)
\(=t^2+8t-20\)
\(=\left(t^2+8t+16\right)-36\)
\(=\left(t+4\right)^2-6^2\)
\(=\left(t+4+6\right)\left(t+4-6\right)\)
\(=\left(t+10\right)\left(t-2\right)\)
\(=\left(x^2-8x+7+10\right)\left(x^2-8x+7-2\right)\)
\(=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)
a) \(x^4-9x^2\)
\(=x^2\left(x^2-9\right)\)
\(=x^2\left(x-3\right)\left(^{ }x+3\right)\)
b) \(3x^2-12x+12\)
\(=3x\left(x^2-4x+4\right)\)
\(=3x\left(x-2\right)^2\)
c) \(x^2+5x+6\)
\(=x^2+3x+2x+6\)
\(=x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
x4 - 9x2
= x4 - ( 3x )2
= ( x2 - 3x ) ( x2 + 3x )
b) 3x3 - 12x2 + 12x
= 3x3 - 6x2 - 6x2 + 12x
= 3x2( x - 2 ) - 6x ( x - 2 )
= ( 3x2 - 6x ) ( x - 2 )
= 3x ( x - 2 ) ( x - 2 )
= 3x ( x- 2 )2
c) x2 + 5x + 6
= x2 + 2x + 3x + 6
= x ( x + 2 ) + 3 ( x + 2 )
= ( x + 3 ) ( x + 2 )
1, \(x^4+5x^3-12x^2+5x+1\)
\(=x^4-2x^3+7x^3+x^2-14x^2+x^2+7x-2x+1\)
\(=\left(x^4-2x^3+x^2\right)+\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)\)
\(=x^2\left(x^2-2x+1\right)+7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2+7x\left(x-1\right)^2+\left(x-1\right)^2\)
\(=\left(x-1\right)^2\left(x^2+7x+1\right)\)
2, \(6x^4+5x^3-38x^2+5x+6\)
\(=6x^4+20x^3-15x^3+6x^2-50x^2+6x^2-15x+20x+6\)
\(=6x^4+20x^3+6x^2-15x^3-50x^2-15x+6x^2+20x+6\)
\(=\left(2x^2-5x+2\right)\left(3x^2+10x+3\right)\)
\(=\left(2x^2-x-4x+2\right)\left(3x^2+10x+3\right)\)
\(=\left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(3x^2+10x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left(3x^2+10x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left(3x^2+9x+x+3\right)\)
\(=\left(x-2\right)\left(2x-1\right)\left[3x\left(x+3\right)+\left(x+3\right)\right]\)
\(=\left(x-2\right)\left(2x-1\right)\left(3x+1\right)\left(x+3\right)\)
đối với 2 bài này thì bạn chỉ cần nhân với \(\dfrac{1}{x^2}\)là giải dc