K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

1. \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+3x+1\right)\)

2. \(x^3-4x^2+12x-27\) 

\(=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x^2-x+9\right)\left(x-3\right)\)

3. \(x^4-2x^3+2x-1\)

 \(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)^2\)

\(=\left(x-1\right)^3\left(x+1\right)\)

d) \(x^4+2x^3+2x^2+2x+1\)

\(=x^4+x^2+2x^3+2x+x^2+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+1\right)\)

\(=\left(x+1\right)^2\left(x^2+1\right)\)

15 tháng 6 2017

1. x3 + 2x2 + 2x + 1
= x3 + x2 + x2 + x + x + 1
= x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x2 + x + 1)

2. x3 - 4x2 + 12x - 27
= x3 - 3x2 - x2 + 3x + 9x - 27
= x2(x - 3) - x(x - 3) + 9(x - 3)
= (x - 3)(x2 - x  + 9)

3. x4 - 2x3 + 2x - 1
= x4 - x3 - x3 + x2 - x2 + x + x - 1
= x3(x - 1) - x2(x - 1) - x(x - 1) + (x - 1)
= (x - 1)(x3 - x2 - x + 1)
= (x - 1)[x(x2 - 1) - (x2 - 1)]
= (x - 1)(x2 - 1)(x - 1)
= (x - 1)2(x - 1)(x + 1)
= (x - 1)3(x + 1)

4. x4 + 2x3 + 2x2 + 2x + 1
= x4 + x3 + x3 + x2 + x2 + x + x + 1
= x3(x + 1) + x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x3 + x2 + x + 1)
= (x + 1)[x(x2 + 1) + (x2 + 1)]
= (x + 1)(x + 1)(x2 + 1)
= (x + 1)2(x2 + 1)

25 tháng 7 2017

Ta có : x3 - 4x2 + 12x - 27

= (x3 - 27) - (4x2 - 12x)

= (x3 - 33) - 4x(x - 3)

= (x - 3)(x2 + 3x + 9) - 4x(x - 3)

= (x - 3) (x2 + 3x + 9 - 4x)

= (x - 3)(x2 - x + 9)

25 tháng 7 2017

Ai giải thì giải hết giúp mình luôn đi ạ!

30 tháng 9 2018

\(x^4+2x^3+2x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+\left(x^2+2x+1\right)\)

\(=\left(x^2+x\right)^2+\left(x+1\right)^2\)

\(=x^2\left(x+1\right)^2+\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left(x^2+1\right)\)

25 tháng 7 2017

a, \(x^3-4x^2+12x-27\) \(=x^3-3x^2-x^2+3x+9x-27\)

\(x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\) \(=\left(x-3\right)\left(x^2-x+9\right)\)

b, \(x^3+2x^2+2x+1\) \(=x^3+x^2+x^2+x+x+1\)

\(x^2\left(x+1\right)+x\left(x+1\right)+x+1=\) \(\left(x+1\right)\left(x^2+x+1\right)\)

c, \(x^4-2x^3+2x-1=\) \(x^4-x^3-x^3+x^2-x^2+x+x-1\)

\(x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+x-1\)

\(\left(x-1\right)\left(x^3-x^2-x+1\right)\)

d, \(x^4+2x^3+2x^2+2x+1=\) \(x^4+x^3+x^3+x^2+x^2+x+x+1\)

\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+x+1\)

\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)

25 tháng 7 2017

Ta có : x3 - 4x2 + 12x - 27

= (x3 - 27) - (4x2 - 12x)

= (x - 3)(x2 + 3x + 9) - 4x(x - 3)

= (x - 3)(x2 + 3x + 9 - 4x)

= (x - 3)(x2 - x + 9)

b) https://olm.vn/hoi-dap/question/1004349.html tôi tự coppy tôi

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

1 tháng 10 2020

b, \(x^3+2x^2+2x+1=\left(x^2+x+1\right)\left(x+1\right)\)

c, \(x^3-4x^2+12x-27=\left(x^2-x+9\right)\left(x-3\right)\)

d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)

e, sai đề 

a, \(\left(ab-1\right)^2+\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)

b, \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2+x+1\right)\)

c, \(x^3-4x^2+12x-27=\left(x-3\right)\left(x^2-x+9\right)\)

d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)

e, cho mình sửa đề xíu

\(x^4+2x^3+2x^2+2x+1=\left(x+1\right)^2\left(x^2+1\right)\)

9 tháng 10 2018

a, 4x- 12x + 9

= (2x + 3)2

b, 9x4y3 + 3x2y4

= 3x2y3(3x2 + y)

c, ( x - 3 )2 - 2x ( x - 3 )

= (x - 3)(x - 3 - 2x)

= (x - 3)(-x - 3)

d, 3x ( x - 1 ) + 6 ( x - 1 )

= 3(x - 1)(x + 2)

e, 2x ( x + 1 ) - 4x - 4

= 2x(x + 1) - 4(x + 1)

= (x + 1)(2x - 4)

= 2(x + 1)(x - 2)

f, ( 2x - 3 )2 - 4x + 6

= (2x - 3)2 - 2(2x - 3)

= (2x - 3)(2x - 3 - 2)

= (2x - 3)(2x - 5)

1 tháng 10 2020

a)(ab−1)2+(a+b)2

=a2b2−2ab+1+a2+2ab+b2

=a2b2+1+a2+b2=a2(b2+1)+(b2+1) = (a2+1)(b2+1)

c)x3−4x2+12x−27

=x3−27+(−4x2+12x)

=(x−3)(x2+3x+9)−4x(x−3)

=(x−3)(x2+3x+9−4x)

=(x−3)(x2−x+9)

b)x3+2x2+2x+1

=x3+2x2+x+x+1

=x(x2+2x+1)+(x+1)

=x(x+1)2+(x+1)

=(x+1)(x(x+1)+1)

=(x+1)(x2+x+1)

d)x4−2x3+2x−1

=x4−2x3+x2−x2+2x−1

=x2(x2−2x+1)−(x2−2x+1)

=(x2−2x+1)(x2−1)

=(x−1)2(x−1)(x+1)

=(x−1)3(x+1)

e)x4+2x3+2x2+2x+1

=x4+2x3+x2+x2+2x+1

=x2(x2+2x+1)+(x2+2x+1)

=(x2+2x+1)(x2+1)

=(x+1)2(x2+1)

14 tháng 8 2015

a) x^2 - 4 + ( x - 2 )^2 

= ( x- 2 )(x + 2 ) + ( x-  2)^2 

= ( x - 2 ) ( x + 2 + x - 2 )

= 2x (x-2)

b) x^3 - 2x^2 + x - xy^2

= x ( x^2 - 2x + 1 - y^2) 

= x [ ( x - 1 )^2 - y^2 ] 

= x(x - 1 - y)( x - 1 + y )

c) x^3 - 4x^2 - 12x + 27 

= x^3 + 3x^2 - 7x^2 - 21x + 9x + 27 

= x^2 ( x + 3 ) - 7x ( x+ 3 ) + 9(x + 3 )

Để hai lần nha 

= ( x+ 3 )(x^2 - 7x + 9 ) 

30 tháng 9 2018

\(x^2-4+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2+x-2\right)\)

\(=2x\left(x-2\right)\)

hk tốt

^^

18 tháng 10 2019

Bài 1 : 

a) \(x^4-4x^2-4x-1\)

\(=x^4-\left(4x^2+4x+1\right)\)

\(=x^4-\left(2x+1\right)^2\)

\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)

b) \(x^2+2x-15\)

\(=x^2+2x+1-16\)

\(=\left(x+1\right)^2-4^2\)

\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)

c) \(x^3y-2x^2y^2+5xy\)

\(=xy\left(x^2-2xy+5\right)\)

18 tháng 10 2019

B2:

a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)

\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)

\(=2x^2-4x+2-4x^2+9\)

\(=-2x^2-4x+11\)

b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)

\(=\left(x+3-x+3\right)^2=6^2=36\)

c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)

\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)

\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)

\(=6x^2+88x-57\)