Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(54x^3+16y^3\)
\(=2\left(27x^3+8y^3\right)\)
\(=2\left[\left(3x\right)^3+\left(2y\right)^3\right]\)
\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
\(x^4-16y^4\)
\(=\left(x^2\right)^2-\left(4y^2\right)^2\)
\(=\left(x^2-4y^2\right)\left(x^2+4y^2\right)\)
\(=\left(x-2y\right)\left(x+2y\right)\left(x^2+4y^2\right)\)
Chúc bạn học tốt.
\(54x^3+16y^3=2\left(27x^3+8y^3\right)\)
\(=2\left[\left(3x\right)^3+\left(2y\right)^3\right]\)
\(=2\left(3x+2y\right)\left[\left(3x\right)^2-3x.2y+\left(2y\right)^2\right]\)
\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
a.\(x^2-64x=x\left(x-64\right)\)
b.\(24x^3-8=8\left(3x^3-1\right)\)
c.\(x^2-16y^2-3x+12y=\left(x^2-16y^2\right)-3\left(x-4y\right)\)\(=\left(x-4y\right)\left(x+4y\right)-3\left(x-4y\right)=\left(x-4y\right)\left(x+4y-3\right)\)
k mình nha bn ^.^ thanks
16y2 - 4x2 - 12x - 9 = 16y2 - (4x2 + 12x + 9) = 16y2 - (2x + 3)2 = (4y - 2x - 3)(4y + 2x + 3)
\(16x^2+y^2+4y-16y-8xy\)
\(=\left(16x^2-8xy+y^2\right)+4y-16y\)
\(=\left(4x+y\right)^2-12y\)
\(=\left(4x+y-\sqrt{12y}\right)\left(4x+y-\sqrt{12y}\right)\)
P/S : Sai thì thôi nha!
Bài làm:
1) Ta có: \(2x^2+5xy+2y^2\)
\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)
\(=2x\left(x+2y\right)+y\left(x+2y\right)\)
\(=\left(2x+y\right)\left(x+2y\right)\)
2) Ta có: \(2x^2+2xy-4y^2\)
\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)
\(=2x\left(x-y\right)+4y\left(x-y\right)\)
\(=2\left(x+2y\right)\left(x-y\right)\)
\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)
\(e,x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
\(f,x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^2-y^2+2x+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x+y+1\right)\)
hk tốt
^^
\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)
\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)
\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)
\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)
\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)
a) \(x^4-2x^3+2x-1\)
\(=x^4-x^3-x^3+2x-2+1\)
\(=\left(x^4-x^3\right)+\left(2x-2\right)-\left(x^3-1\right)\)
\(=x^3\left(x-1\right)+2\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^3+2-x^2-x-1\right)\)
\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)
\(=\left(x-1\right)\left[\left(x^3-x^2\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x^2-1\right)\left(x-1\right)\)
\(=\left(x-1\right)^2\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)^3\left(x+1\right)\)
b) \(x^4+2x^3+2x^2+2x+1\)
\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+2x\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
16y2-x2-2x-1
=16y2-(x2+2x+1)
=(4y)2-(x+1)2
=[4y-(x+1)][4y+(x+1)]
=(4y-x-1)(4y+x+1)
\(16y^2-x^2-2x-1=\left(4y\right)^2-\left(x^2+2x+1\right)=\left(4y\right)^2-\left(x+1\right)^2=\left(4y-x-1\right)\left(4y+x+1\right)\)